Electrocardiogram (ECG) is a non-invasive technique used to detect various cardiac disorders. One of the major causes of cardiac arrest is an arrhythmia. Furthermore, ECG beat classification is essential to detect life-threatening cardiac arrhythmias. The major limitations of the traditional ECG beat classification systems are the requirement of an extensive training dataset to train the model and inconsistent performance for the detection of ventricular and supraventricular ectopic (V and S) beats. To overcome these limitations, a system denoted as SpEC is proposed in this work based on Stockwell transform (ST) and two-dimensional residual network (2D-ResNet) for improvement of ECG beat classification technique with a limited amount of training data. ST, which is used to represent the ECG signal into a time-frequency domain, provides frequency invariant amplitude response and dynamic resolution. The resultant ST images are applied as input to the proposed 2D-ResNet to classify five different types of ECG beats in a patient-specific way as recommended by the Association for the Advancement of Medical Instrumentation (AAMI). The proposed SpEC system achieved an overall accuracy (Acc) of 99.73%, sensitivity (Sen) = 98.84%, Specificity (Spe) = 99.50%, Positive predictivity (Ppr) = 98.20% on MIT-BIH arrhythmia database, and shows an overall Acc of 89.87% on real-time acquired ECG dataset with classification time of single ECG beat image = 0.2365 (s) in detecting of five arrhythmia classes. The proposed method shows better performance on both the database compared to the earlier reported state-of-art techniques.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The degraded quality of the electrocardiogram (ECG) signals is the main source of false alarms in critical care units. Therefore, a preliminary analysis of the ECG signal is required to decide its clinical acceptability. In conventional techniques, different handcrafted features are extracted from the ECG signal based on signal quality indices (SQIs) to predict clinical acceptability. A one-dimensional deformable convolutional neural network (1DDCNN) is proposed in this work to extract features automatically, without manual interference, to detect the clinical acceptability of ECG signals efficiently. In order to create DCNN, the deformable convolution and pooling layers are merged into the regular convolutional neural network (CNN) architecture. In DCNN, the equidistant sampling locations of a regular CNN are replaced with adaptive sampling locations, which improves the network’s ability to learn based on the input. Deformable convolution layers concentrate more on significant segments of the ECG signals rather than giving equal attention to all segments. The proposed method is able to detect acceptable and unacceptable ECG signals with an accuracy of 99.50%, recall of 99.78%, specificity of 99.60%, precision of 99.47%, and F-score of 0.999. Experimental results show that the proposed method performs better than earlier state-of-the-art techniques.
This paper presents a new customized hybrid approach for early detection of cardiac abnormalities using an electrocardiogram (ECG). The ECG is a bio-electrical signal that helps monitor the heart’s electrical activity. It can provide health information about the normal and abnormal physiology of the heart. Early diagnosis of cardiac abnormalities is critical for cardiac patients to avoid stroke or sudden cardiac death. The main aim of this paper is to detect crucial beats that can damage the functioning of the heart. Initially, a modified Pan–Tompkins algorithm identifies the characteristic points, followed by heartbeat segmentation. Subsequently, a different hybrid deep convolutional neural network (CNN) is proposed to experiment on standard and real-time long-term ECG databases. This work successfully classifies several cardiac beat abnormalities such as supra-ventricular ectopic beats (SVE), ventricular beats (VE), intra-ventricular conduction disturbances beats (IVCD), and normal beats (N). The obtained classification results show a better accuracy of 99.28% with an F1 score of 99.24% with the MIT–BIH database and a descent accuracy of 99.12% with the real-time acquired database.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.