Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigates the use of a thermopressor to achieve highly dispersed liquid atomization, with a primary focus on its application in enhancing contact cooling systems of the cyclic air for gas turbines. The use of a thermopressor results in a substantial reduction in the average droplet diameter, specifically to less than 25 μm, within the dispersed flow. Due to practically instantaneous evaporation of highly atomized liquid droplets in accelerated superheated air the pressure drop is reduced to minimum. A further increase of the air pressure takes place in diffuser. In its turn, this allows for the compensation of hydraulic pressure losses in the air path, thereby reducing compressive work. Experimental data uncover a significant decrease in the average droplet diameter, with reductions ranging from 20 to 30 µm within the thermopressor due to increased flow turbulence and intense evaporation. The minimum achievable droplet diameter is as low as 15 µm and accompanied by a notable increase in the fraction of small droplets (less than 25 µm) to 40–60%. Furthermore, the droplet distribution becomes more uniform, with the absence of large droplets exceeding 70 µm in diameter. Increasing the water flow during injection has a positive impact on the number of smaller droplets, particularly those around 25 μm, which is advantageous for contact cooling. The use of the thermopressor method for cooling cyclic air provides maximum protection to blade surfaces against drop-impact erosion, primarily due to the larger number of droplets with diameters below 25 μm. These findings underline the potential of a properly configured thermopressor to improve the efficiency of contact cooling systems in gas turbines, resulting in improved performance and reliability in power generation applications. The hydrodynamic principles explored in this study may have wide applications in marine and stationary power plants based on gas and steam turbines, gas and internal combustion engines.
2
Content available Advanced fuel system with gaseous hydrogen additives
100%
EN
The advancement of contemporary internal combustion engine technologies necessitates not only design enhancements but also the exploration of alternative fuels or fuel catalysts. These endeavors are integral to curbing the emission of hazardous substances in exhaust gases. Most contemporary catalyst additives are of complex chemical origins, introduced into the fuel during the fuel preparation stage. Nonetheless, none of these additives yield a significant reduction in fuel consumption. The research endeavors to develop the fuel system of a primary marine diesel engine to facilitate the incorporation of pure hydrogen additives into diesel fuel. Notably, this study introduces a pioneering approach, employing compressed gaseous hydrogen up to 5 MPa as an additive to the principal diesel fuel. This method obviates the need for extensive modifications to the ship engine fuel equipment and is adaptable to modern marine power plants. With the introduction of modest quantities of hydrogen into the primary fuel, observable shifts in the behavior of the fuel equipment become apparent, aligning with the calculations outlined in the methodology. The innovative outcomes of the experimental study affirm that the mass consumption of hydrogen is contingent upon the hydrogen supply pressure, the settings of the fuel equipment, and the structural attributes of the fuel delivery system. The modulation of engine load exerts a particularly pronounced influence on the mass admixture of hydrogen. The proportion of mass addition of hydrogen in relation to the pressure of supply (ranging from 4–12 MPa) adheres to a geometric progression (within the range of 0.04–0.1%). The application of this technology allows for a reduction in the specific fuel consumption of the engine by 2–5%, contingent upon the type of fuel system in use, and concurrently permits an augmentation in engine power by up to 5%. The resultant economic benefits are estimated at 1.5–4.2% of the total fuel expenses. This technology is applicable across marine, automotive, tractor, and stationary diesel engines. Its implementation necessitates no intricate modifications to the engine design, and its utilization demands no specialized skills. It is worth noting that, in addition to hydrogen, other combustible gases can be employed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.