Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The terrestrial mosses Hypnum hamulosum and Brachythecium brotheri, which could live in water under experimental conditions, were treated with Cd²⁺ at 0, 20, 50, 100, 150, and 200 mg‧L⁻¹, and Cr³⁺ at 0, 10, 20, 30, 50, and 100 mg‧L⁻¹. The Cd²⁺ and Cr³⁺ contents in H. hamulosum and B. brotheri were measured by ICP-AES after they had been submerged in the treatment solution for 7, 14, 21, and 28 days. The results showed: 1) Both moss species have a high ability in absorb Cd and Cr. 2) With the increase of Cd²⁺ (or Cr³⁺) concentration in the culture solution, the Cd (or Cr) contents both in H. hamulosum and B. brotheri increased linearly. 3) With the extension of the treatment time, their Cd and Cr content increased logarithmically. 4) Hyphnum hamulosum and B. brotheri differ in their ability to absorb Cd²⁺ and Cr³⁺; the former has a higher ability to absorb Cd²⁺, but lower ability to absorb Cr³⁺ than the latter.
2
Content available remote Voice Conversion Using A Two-Factor Gaussian Process Latent Variable Model
100%
EN
This paper presents a novel strategy for voice conversion by solving style and content separation task using a two-factor Gaussian Process Latent Variable Model (GP-LVM). A generative model for speech is developed by interaction of style and content, which represent the voice individual characteristics and semantic information respectively. The interaction is captured by a GP-LVM with two latent variables, as well as a GP mapping to observation. Then, for a given collection of labelled observations, the separation task is accomplished by fitting the model with Maximum Likelihood method. Finally, voice conversion is implemented by style alternation, and the desired speech is reconstructed with the decomposed target speaker style and the source speech content using the learned model as a prior. Both objective and subjective test results show the advantage of the proposed method compared to the traditional GMM-based mapping system with limited size of training data. Furthermore, experimental results indicate that the GP-LVM with nonlinear kernel functions behaves better than that with linear ones for voice conversion due to its ability of better capturing the interaction between style and content, and rich varieties of the two factors in a training set also help to improve the conversion performance.
PL
W artykule opisano nową strategię konwersji głosu, poprzez rozdzielenie rodzaju i treści, przy wykorzystaniu dwu-wskaźnikowej metody GPLVM (ang. Gaussian Process Latent Variable Model). Wykonane badania wskazują na lepsze działanie proponowanego algorytmu w porównaniu z tradycyjnie stosowanym systemem mapowania typu GMM przy ograniczonej ilości danych do testowania. Wykazano, że GPLVM ma lepsze właściwości w konwersji głosu z nieliniową niż liniową funkcją jądra.
3
Content available remote A Novel Structure Design and Training Algorithm for Quantum Neural Network
86%
EN
In the structure of original Quantum Neural Network (QNN), only multi-sigmoid transfer function is adopted. Besides that, due to the conflict of the two objective functions in original training algorithm, the training process converges slowly and presents constant variation. In this paper, the QNN with multi-tan-sigmoid transfer function and a novel training algorithm which combines the two objective functions are proposed. Experimental results demonstrate the effectiveness of the structure improvement and the new training algorithm.
PL
W oryginalnym algorytmie kwantowej sieci neuronowej QNN tylko multisigmoidalna funkcja przejścia jest wykorzystywana. W pracy zaprezentowano sieć z multi-tan-sigmoidalną funkcją przejścia z nowym algorytmem uczenia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.