Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The interaction of an intense laser pulse with a solid target produces large number of fast free electrons. This emission gives rise to two distinct sources of the electromagnetic pulse (EMP): the pulsed return current through the holder of the target and the out flow of electrons into the vacuum. A relation between the characteristics of laser-produced plasma, the target return current and the EMP emission are presented in the case of a massive Au target irradiated with the intensity of up to 3 × 1016 W/cm2. The emission of the EMP was recorded using a 12 cm diameter Moebius loop antennas, and the target return current was measured using a new type of inductive target probe (T-probe). The simultaneous use of the inductive target probe and the Moebius loop antenna represents a new useful way of diagnosing the laser–matter interaction, which was employed to distinguish between laser-generated ion sources driven by low and high contrast laser pulses.
EN
The parameters of neutron emission from the neck of the condensed Z-pinch, were measured at an S-300 installation (2 MA, 100 ns). Profiled loads with central parts made from microporous deuterated polyethylene (with a density of 100 mg/cm3) were used in the experiments. Neutron emission parameters were measured by the time-of-flight (TOF) method. Neutrons were registered using four flight bases with 10 scintillation detectors which were placed at two axial and two radial directions. It was found that the mean neutron energy, determined by the TOF method, turned out to be anisotropic. The average energy of neutrons emitted along the axis towards the cathode, was shifted to higher energy (2.6-2.8 MeV) and the average energy of neutrons emitted towards the anode, was shifted to lower energy (2.1-2.3 MeV) compared to the d-d reaction neutron energy 2.45 MeV. The average energy of neutrons, emitted in two opposite radial directions, was close to 2.45 MeV. The half-width of the energy distributions reconstructed for all directions was 400-500 keV. The analysis of the experimental results demonstrated that the found phenomena could be explained by a slowly decaying high energy tail in the energy distribution of colliding deuterons. The maximal neutron yield was of 6 x 109.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.