Two different models for a Hopf-von Neumann algebra of bounded functions on the quantum semigroup of all (quantum) permutations of infinitely many elements are proposed, one based on projective limits of enveloping von Neumann algebras related to finite quantum permutation groups, and the second on a universal property with respect to infinite magic unitaries.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Recent results of M. Junge and Q. Xu on the ergodic properties of the averages of kernels in noncommutative $L^{p}$-spaces are applied to the analysis of almost uniform convergence of operators induced by convolutions on compact quantum groups.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We find an analytic formulation of the notion of Hopf image, in terms of the associated idempotent state. More precisely, if π:A → Mₙ(ℂ) is a finite-dimensional representation of a Hopf C*-algebra, we prove that the idempotent state associated to its Hopf image A' must be the convolution Cesàro limit of the linear functional φ = tr ∘ π. We then discuss some consequences of this result, notably to inner linearity questions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.