In this study, fully developed laminar flow and heat transfer in an internally longitudinally finned tube are investigated through application of the meshless method. The flow is assumed to be both hydrodynamically and thermally developed, with a uniform outside-the-wall temperature. The governing equations have been solved numerically by means of the method of fundamental solutions in combination with the method of particular solutions to obtain the velocity and temperature distributions. The advantage of the proposed approach is that it does not require mesh generation on the considered domain or its boundary, but uses only a cloud of arbitrarily located nodes. The results, comprising the friction factor as well as the Nusselt number, are presented for varied length values and fin numbers, as well as the thermal conductivity ratio between the tube and the flowing fluid. The results show that the heat transfer improves significantly if more fins are used.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The main purpose of this paper is the investigation of the boundary effect in bending problem of peril irated plates and its influence on the effective flexural rigidity. The considered strip plate is loaded by constant uniformly distributed load and has square penetration pattern. The boundary value problem for determination of deflection repeated element of structure is solved by means of boundary collocation method with a use of the special purpose Trefftz functions. These functions fulfil exactly not only governing equation but also boundary conditions on holes and some symmetry conditions. The number of perforations is discussed on effective rigidity.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.