Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Ordinals in topological groups
100%
|
|
nr 2
127-138
EN
We show that if an uncountable regular cardinal τ and τ + 1 embed in a topological group G as closed subspaces then G is not normal. We also prove that an uncountable regular cardinal cannot be embedded in a torsion free Abelian group that is hereditarily normal. These results are corollaries to our main results about ordinals in topological groups. To state the main results, let τ be an uncountable regular cardinal and G a T₁ topological group. We prove, among others, the following statements: (1) If τ and τ + 1 embed closedly in G then τ × (τ + 1) embeds closedly in G; (2) If τ embeds in G, G is Abelian, and the order of every non-neutral element of G is greater than $2^{N} - 1$ then $∏_{i∈N}τ$ embeds in G; (3) The previous statement holds if τ is replaced by τ + 1; (4) If G is Abelian, algebraically generated by τ + 1 ⊂ G, and the order of every element does not exceed $2^{N} - 1$ then $∏_{i∈N}(τ+1)$ is not embeddable in G.
2
Content available remote Spaces of continuous step functions over LOTS
100%
|
|
nr 1
25-35
EN
We investigate spaces $C_{p}(·,n)$ over LOTS (linearly ordered topological spaces). We find natural necessary conditions for linear Lindelöfness of $C_{p}(·,n)$ over LOTS. We also characterize countably compact LOTS whose $C_{p}(·,n)$ is linearly Lindelöf for each n. Both the necessary conditions and the characterization are given in terms of the topology of the Dedekind completion of a LOTS.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.