Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 83

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
1
Content available remote On the congruence f(x) + g(y) + c ≡ 0 (mod xy)
100%
EN
Four theorems of the author on the subject are given without proofs.
4
Content available remote Stern Polynomials as Numerators of Continued Fractions
100%
|
|
tom 62
|
nr 1
23-27
EN
It is proved that the nth Stern polynomial Bₙ(t) in the sense of Klavžar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of n terms. This generalizes a result of Graham, Knuth and Patashnik concerning the Stern sequence Bₙ(1). As an application, the degree of Bₙ(t) is expressed in terms of the binary expansion of n.
5
Content available remote Solution to a Problem of Lubelski and an Improvement of a Theorem of His
100%
|
|
tom 59
|
nr 2
115-119
EN
The paper consists of two parts, both related to problems of Lubelski, but unrelated otherwise. Theorem 1 enumerates for a = 1,2 the finitely many positive integers D such that every odd positive integer L that divides x² +Dy² for (x,y) = 1 has the property that either L or $2^{a}L$ is properly represented by x²+Dy². Theorem 2 asserts the following property of finite extensions k of ℚ : if a polynomial f ∈ k[x] for almost all prime ideals 𝔭 of k has modulo 𝔭 at least v linear factors, counting multiplicities, then either f is divisible by a product of v+1 factors from k[x]∖ k, or f is a product of v linear factors from k[x].
6
Content available remote On the diophantine equation x²+x+1 = yz
100%
|
|
tom 141
|
nr 2
243-248
EN
All solutions of the equation x²+x+1 = yz in non-negative integers x,y,z are given in terms of an arithmetic continued fraction.
7
Content available remote Primitive roots and quadratic non-residues
100%
Acta Arithmetica
|
2011
|
tom 149
|
nr 2
161-170
8
Content available remote On sums of powers of the positive integers
100%
EN
The pairs (k,m) are studied such that for every positive integer n we have $1^{k} + 2^{k} + ⋯ + n^{k} | 1^{km} + 2^{km} + ⋯ + n^{km}$.
9
Content available remote The reduced length of a polynomial with complex coefficients
100%
10
Content available remote On Ternary Integral Recurrences
100%
|
|
tom 63
|
nr 1
19-23
EN
We prove that if a,b,c,d,e,m are integers, m > 0 and (m,ac) = 1, then there exist infinitely many positive integers n such that m|(an+b)cⁿ - deⁿ. Hence we derive a similar conclusion for ternary integral recurrences.
11
Content available remote Reciprocal Stern Polynomials
100%
|
|
tom 63
|
nr 2
141-147
EN
A partial answer is given to a problem of Ulas (2011), asking when the nth Stern polynomial is reciprocal.
12
Content available remote On the congruence f(x) + g(y) + c ≡ 0 (mod xy) (completion of Mordell's proof)
100%
|
|
nr 4
347-374
EN
Assertions on the congruence f(x) + g(y) + c ≡ 0 (mod xy) made without proof by Mordell in his paper in Acta Math. 88 (1952) are either proved or disproved.
13
Content available remote A property of the unitary convolution
100%
14
Content available remote Jerzy Browkin (1934-2015)
88%
|
|
tom 172
|
nr 3
199-206
16
75%
|
|
tom 9
|
nr 1
EN
The article contains no abstract
18
Content available remote Comparison of L¹- and $L^{∞}$-norms of squares of polynomials
63%
|
|
tom 104
|
nr 3
283-296
19
Content available remote On integers not of the form n - φ (n)
63%
EN
W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers $2^k·509203$ (k = 1, 2,...) is of the form n - φ(n).
20
Content available remote On Equations y² = xⁿ+k in a Finite Field
63%
|
|
nr 3
223-226
EN
Solutions of the equations y² = xⁿ+k (n = 3,4) in a finite field are given almost explicitly in terms of k.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.