Carbon Nanotubes (CNTs) have a great potential in many areas like electromechanical systems, medical application, pharmaceutical industry etc. The surrounding physical environment of CNT is very important on torsional vibration behavior of CNT. Damp¬ing and elastic effect of medium to the torsional vibration of CNTs are investigated in the present study. Governing equation of motion of nanotube is obtained using Eringen’s Nonlocal Elasticty Theory. The effects of some parameters like nonlocal parameter, stiffness parameter and nanotube length are studied in detail.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, the effect of the electron sound speed on the extraordinary wave propagation is calculated without an approximation for either collisional or collisionless cases in the ionospheric plasma by using the real geometry of the Earth’s magnetic field for the Northern Hemisphere. It is observed that there is no remarkable effect on the propagation of the extraordinary wave, especially at reflection altitudes. But it is also observed that the magnitudes of k2 (the square of the wave number) have changed every season, and the phase velocity of wave in warm ionospheric plasma has increased.
The wave propagation characteristics of functionally graded (FG) double-beams are investigated by use of Euler-Bernoulli beam theory. Two beams are connected by a Winkler foundation. The wave propagation characteristics like frequency, phase and group velocities are obtained for different wave numbers and material properties. Four frequencies are obtained for functionally graded double-beam system. It is obtained that flexural and axial waves are coupled for FG double-beams.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.