Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper studies the output tracking and almost disturbance decoupling problem of nonlinear control systems with uncertainties via fuzzy logic control and feedback linearization approach. The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system enjoys for any initial condition and bounded tracking signal the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling, i.e., the influence of disturbances on the L2 norm of the output tracking error can be arbitrarily attenuated by increasing some adjustable parameters. The underlying theoretical approaches are the differential geometry approach and the composite Lyapunov approach. One example, which cannot be solved by the approach from the first paper (Marino et al., 1989) on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the almost disturbance decoupling and the convergence rate performances are easily achieved by virtue of our approach. In order to demonstrate the practical applicability, the paper takes up the study of an inverted pendulum control system.
EN
An efficient and accurate method to test Escherichia coli (E. coli) adhesion to intestinal epithelial cells will contribute to the study of bacterial pathogenesis and the function of genes that encode receptors related to adhesion. This study used the quantitative real-time polymerase chain reaction (qPCR) method. qPCR primers were designed from the PILIN gene of E. coli F18ab, F18ac, and K88ac, and the pig β-ACTIN gene. Total deoxyribonucleic acid (DNA) from E. coli and intestinal epithelial cells (IPEC-J2 cells) were used as templates for qPCR. The 2−ΔΔCt formula was used to calculate the relative number of bacteria in cultures of different areas. We found that the relative numbers of F18ab, F18ac, and K88ac that adhered to IPEC-J2 cells did not differ significantly in 6-, 12-, and 24-well culture plates. This finding indicated that there was no relationship between the relative adhesion number of E. coli and the area of cells, so the method of qPCR could accurately test the relative number of E. coli. This study provided a convenient and reliable testing method for experiments involving E. coli adhesion, and also provided innovative ideas for similar detection methods.
EN
The Toll-like receptor 4 (TLR4) signaling pathway is an important inflammatory pathways associated with the progression of numerous diseases. The aim of the present study was to investigate the relationship between TLR4 signaling and resistance to Escherichia coli F18 in locally weaned Meishan piglets. Using a real-time PCR approach, expression profiles were determined for key TLR4 signaling pathway genes TLR4, MyD88, CD14, IFN-α, IL-1β and TNF-α in the spleen, thymus, lymph nodes, duodenum and jejunum of E. coli F18-resistant and -sensitive animals. TLR4 signaling pathway genes were expressed in all the immune organs and intestinal tissues, and the expression was generally higher in the spleen and lymph nodes. TLR4 transcription was higher in the spleen of sensitive piglets (p<0.05), but there was no significant difference in TLR4 mRNA levels in other tissues. Similarly, CD14 transcription was higher in lymph nodes of sensitive animals (p<0.05) but not in other tissues. IL-1β expression was higher in the spleen and in the duodenum of resistant piglets (p<0.05, p<0.01, respectively), and there were no significant differences in other tissues. There were also no significant differences in the expression of MyD88, TNF-α and IFN-α between sensitive and resistant piglets (p>0.05). These results further confirm the involvement of the TLR4 signaling pathway in resistance to E. coli F18 in Meishan weaned piglets. The resistance appeared to be mediated via downregulation of TLR4 and CD14, and upregulation of MyD88 that may promote the release of cytokines TNF-α, IL-1β, IFN-α and other inflammatory mediators which help to fight against E. coli F18 infection.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.