The timing of the formation of extensively distributed sand dunes in the Bohai coastal area and its forcing factors are poorly understood. In this study, the chronology of a well-preserved sand dune located in Panjin Forest Park (PJ) in the Lower Liao Plain (LLP) is investigated using quartz optically stimulated luminescence (OSL) and K-feldspar postinfrared (IR) infrared stimulated luminescence (IRSL) (pIRIR) dating. For the pIRIR measurements, the combination of preheating at 180°C and pIRIR stimulation at 150°C (pIRIR150) is exploited. The quartz results show that the sand dune accumulated from c. 120 a (1890 AD) to c. 70 a (1940 AD) before present, and the underlying sandy soil sediments deposited from c. 5.0 ka to c. 0.13 ka as marsh sediment after the sea level highstand since the mid-Holocene. From the evidence in historical coastline records, the PJ sand dune is an inland sand dune and not a coastal sand dune. Based on further information of climate and temperature change after the Little Ice Age (LIA) and human activity in northeastern China, we conclude that the PJ sand dune accumulation was very likely impacted by the immigrants and land reclamation at the end of Qing dynasty. The fading corrected IR50 ages, the apparent and fading corrected pIRIR150 ages are consistent with quartz ages for two sandy soil samples but overestimate those for six sand samples. The overestimation of the feldspar ages is derived from the residual signal which has not been bleached before burial. The offset obtained from the difference between the quartz OSL and the feldspar pIRIR150 ages are ~20–160 a (predicted residual dose: ~0.08–0.60 Gy), whereas the measured residual dose after bleaching 4 h in a solar simulator yielded age overestimation of ~10–40 a (~0.05–0.16 Gy). The age discrepancy calculated from the predicted residual was larger than those obtained from the laboratory measured residuals. We conclude that the pIRIR150 of aeolian sediment is applicable for samples older than ~1000 years where the effect of the residual dose become negligible.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Recent work on infrared stimulated luminescence (IRSL) dating has focussed on finding and testing signals which show less or negligible fading. IRSL signals measured at elevated temperature following IR stimulation at 50°C (post-IR IRSL) have been shown to be much more stable than the low temperature IRSL signal and seem to have considerable potential for dating. For Early Pleistocene samples of both European and Chinese loess natural post-IR IRSL signals lying in the saturation region of the laboratory dose response curve have been observed; this suggests that there is no significant fading in nature. As a contribution to the further testing of post-IR IRSL dating, we have used 18 samples from two Japanese loess profiles for which quartz OSL and tephra ages up to 600 ka provide age control. After a preheat of 320°C (60 s), the polymineral fine grains (4-11 μm) were bleached with IR at 50°C (200 s) and the IRSL was subsequently measured at 290°C for 200 s. In general, the fading uncorrected post-IR IRSL ages agree with both the quartz OSL and the tephra ages. We conclude that the post-IR IRSL signal from these samples does not fade significantly and allows precise and accurate age determinations on these sediments.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Well constrained numerical ages of alluvial fan sediments are key to understanding the chronology of alluvial episodes and tectonic activity at the front of the Andean Precordillera. We tested the application of radiocarbon and optically stimulated luminescence (OSL) dating in the distal part of an alluvial fan five kilometers north of Mendoza. For OSL dating a large number of aliquots (n > 70) – each composed of ~50 quartz grains – were measured in order to obtain reliable burial ages despite scattered dose distributions. Owing to a feldspar contamination in all samples, an infrared stimulation was inserted before each OSL measurement, which reduced the feldspar OSL signal suc-cessfully. By using the minimum age model we obtained stratigraphically consistent burial ages of alluvial deposits in a depth profile. The uppermost ~1 m of sediment is composed of debris flow deposits buried 770š76 years ago. Three plant remnants used for radiocarbon dating from the same layer, however, yielded ages younger than 350 years, which are interpreted to underestimate the depositional age. Underneath the debris flow, a major unconformity cuts a series of distal alluvial fan sediments with interstratified floodplain deposits, which are composed of sandy and calcite-rich silt layers, respectively. Three samples from this unit which were distributed over one meter of sediment thickness yielded statistically concordant OSL ages of 12.3š1.2 ka, 12.3š1.2 ka, and 11.7š1.1 ka. The deposi-tion of these sediments during the latest Pleistocene coincides with a phase of cool and humid climate, which occurred before the alluvial fan propagated farther into the foreland. The overlying debris flow sediments are associated with alluvial fan incision during the arid Late Holocene.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The infrared radiofluorescence (IR-RF) dating technique was applied to eight fluvial samples that were collected from two sediment cores at the Heidelberg Basin located near Viernheim and Ludwigshafen in southwest Germany. Based on the IR-RF derived ages of the samples it was possible to establish a chronological framework for the Mid-Pleistocene fluvial deposits of the Heidelberg Basin. The results allow us to distinguish between four main periods of aggradation. The lowermost sample taken from 100 m core depth lead to an IR-RF age of 643 š 28 ka pointing to a Cromerian period of aggradation (OIS 17-16). For the Elsterian it is now possible to distinguish between two aggradation periods, one occurring during the Lower Elsterian period (OIS 15) and a second during the Upper Elsterian period (OIS 12-11). For the so called Upper interlayer (or “Oberer Zwischenhorizont” – a layer of organic-rich and finer-grained deposits), the IR-RF results point to a deposition age of around 300 ka, with samples taken directly on top and out of this layer yielding IR-RF ages of 288 š 19 ka and 302 š 19 ka, respectively. Hence, the measured IR-RF ages clearly point to a deposition during the Lower Saalian period (OIS 9-8) whereas earlier studies assumed a Cromerian age for the sediments of the Upper Interlayer based on pollen records and also mollusc fauna. The new IR-RF dataset indicates that significant hiatuses are present within the fluvial sediment successions. In particular the Eemian and Upper Saalian deposits are missing in this part of the northern Upper Rhine Graben, as the 300 ka deposits are directly overlain by Weichselian fluvial sediments. It is obvious that time periods of increased fluvial aggradation were interrupted by time periods of almost no aggradation or erosion which should have been mainly triggered by phases of increased and decreased subsidence of the Heidelberg Basin.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Due to the construction of a new North-South subway in Cologne, Roman time harbour sediments were exposed and were sampled for luminescence dating. A very good independent age control was given by the precise knowledge of the chronology of Roman activity and by radiocarbon ages of charcoal samples. Hence, different methodological approaches within luminescence dating were applied for Holocene heterogeneously bleached fluvial samples and were compared to the known ages. For one sample, optically stimulated luminescence (OSL) dating was applied to coarse-grained quartz using a single aliquot regenerative-dose (SAR) protocol. After De-measurements, different statistical approaches were tested (i.e. arithmetic mean, median, minimum age model, finite mixture model, leading edge method and the Fuchs and Lang approach). It is demonstrated that the Fuchs and Lang approach along with the leading edge method yielded the best matching OSL ages with respect to the known ages. For the other sample which showed feldspar contamination within the quartz signal, the post-IR blue stimulated luminescence (double SAR protocol) was measured in three different ways to calculate the De-value: with continuous wave (CW) stimulation with an IR-bleach at 50°C and at 225°C for 100 s prior to the OSL, and pulsed OSL (POSL). It was demonstrated that the IR-stimulation at 225°C has very good potential to remove the feldspar signal contribution as well as pulsed OSL, but the former might deplete parts of the quartz OSL signal.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.