Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
The stress-strain characteristics of a clot during loading/unloading mechanical cycles are significant features to assess the underlying mechanisms of thrombectomy, especially when multiple thrombectomy attempts are required. We investigated a damage model to predict loading/unloading response of clots. To study the validity of the model, we tested theoretical models to reproduce the experimentally obtained mechanical characteristics of clots under various conditions. Three types of clot analogs with different red blood cell (RBC) compositions were prepared. Cylindrical clot analogs were formed for the tensile and compression tests. Loading/unloading tests at 80% of strain were conducted, where the material parameters were determined by fitting the results to a theoretical curve combining the damage model and the elasto-plastic constitutive model. Through the computation for theoretical curves, unique characteristics of clots were revealed such that the hysteresis loss rate did not change by varying RBC contents, except for the clot created with 0% RBC composition, under compressive loading. In addition, the plastic strain decreased as the RBC content decreased under tensile loading, whereas it increased as the RBC content decreased under compressive loading. A three-dimensional finite element method (FEM) was employed with the determined parameters. The FEM could accurately reproduce the experimental stress-strain curves for all types of clot analogs and for both loading types up to a strain of 80%. The results indicate that the theoretical model which incorporates and combines the damage model and the elasto-plastic constitutive model is applicable to predict the non-linear stress–strain behavior of clots under loading and unloading.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.