The article presents the problem of particulate matter and heavy metal emissions from the tribological systems (road abrasion, brake and tyre wear) road of cars equipped with internal combustion engines (ICEs), battery electric vehicles (BEVs), hybrids and plug-in vehicles (PHEVs). The results of mathematical modelling carried out for obtaining of the emissions of particulate matter and heavy metals, such as As, Cd, Cr, Cu, Ni, Pb, Se and Zn, resulting from road abrasion, brakes and tyre wear, are presented. Emissions are shown depending on the average speed and type of traffic (traffic in the city (urban), outside the city (rural) and on the highway) and the type of vehicle.
This article compares the equivalent emissions from battery electric vehicles (BEVs) with those of internal combustion engines vehicles (ICEVs) and hybrid vehicles (HV). The considerations focused on the dependence of the equivalent emission from electric cars on the official/national Polish energy mix (which is still mainly based on hard coal). The results of mathematical simulations of the impact of the fuel type on pollutants’ emissions are presented. The article also focuses on the effects of the fuel used in internal combustion engines vehicles (LPG, CNG, petrol, diesel, hydrogen) and the official/national Polish energy mix for battery electric vehicles on carbon dioxide (CO2), nitrogen oxides (NOx), particulate matter (PM), carbon monoxide (CO) and sulphur dioxide (SO2) emissions.
The aim of this paper is to present the results of mathematically modelling the influence of ambient temperature on hydrocarbons (HCs, comprised of methane and non-methane volatile organic compounds) in cold-start emissions from passenger cars (PCs) for different fuel types, vehicle segments including hybrid vehicles, and the Euro standard. In this article the simulations are performed using COPERT software, assuming ambient temperatures from 20◦C to +30◦C, with 5◦C intervals. The modelling results presented show that a change in ambient temperature has a significant effect on hydrocarbons in cold-start emissions. Furthermore, our results show that hydrocarbons emissions are sensitive to ambient temperature fluctuations, and dependent on fuel type, vehicle segment, and the Euro standard.
The inventory results of pollutant emission from motor vehicles in Poland comparing to the emission of pollutants in the European Union have been presented in the paper. The analysis is based on the official results of the pollution inventory reported to the European Union. Emission of the following substances was considered for the years 1990-2016 for Poland and the European Union from all civilization and road transport activities: carbon monoxide, non-methan volatile organic compounds, nitrogen oxides and particulate matter consisting of fractions: total suspended particles, PM10 and PM2.5. It was observed that the share of pollutant emission from road transport in Poland is smaller than for the entire European Union. This is especially evident in the case of particulate matter and nitrogen oxides. As a result of the analysis of the emission inventory in the European Union, it was confirmed that the share of motorization in the emission of pollutants harmful to human health is significantly smaller in Poland than in the entire European Union. Therefore, conducting a detailed analysis of specific distance emission of pollutants from a statistical vehicle as well as extending research on greenhouse gas emission from motor vehicles is recommended.
In the article were compared the vehicles (by pairing) the vehicles on the basis of selected criteria considering vehicles’: weight, length, wheel width, maximum output and acceleration time. The article was carried out by analysing the available source materials and specific energy mix based on coal. The emission of air pollutants (exhaustive) was estimated using the mathematical calculation. In order to carry out the analysis, the data provided by the manufacturers of the considered cars were used, concerning fuel consumption by the cars equipped with the internal combustion engines or electricity consumption in the case of cars with equipped with electric motors. The air pollutants that were taken into consideration: carbon monoxide, nitrogen oxides, sulphur dioxide, carbon dioxide, and total particulate matter. Apart from the exhaustive emissions, the total particular matter emissions from the tyre and brake wear and road abrasion is also included. The pollutant emission was estimated on the basis of emission factors using the average mileage characterizing for driving in European conditions.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of the study is to present the results of mathematically modeled influence of the average speed on the pollutant released in the air during the cold-start process. There were taken into consideration the emission from the passenger cars (PCs) for the different fuel types, vehicles’ segments (including hybrid), and the Euro standard. In the article the simulations was performed using the COPERT software, as well as WLTP-based research. The modelling results there are presented show that the change in average speed has a significant effect on air pollutant (CO2, NOx, NMVOC, CO) emissions released in cold-start process. Furthermore, the results show that pollutants’ emissions are sensitive to average speed fluctuations.
This article presents results of the inventory of pollutant emission from motor vehicles in Poland. To determine emission from motor vehicles in Poland COPERT 5 software was used for the first time. In addition, a comparison of the national emission from motor vehicles in 2016 and in 2015 was included. Pollutants harmful to health were considered primarily: carbon monoxide, organic compounds, nitrogen oxides and particulate matter. Emission of substances contributing to the intensification of the greenhouse effect were also examined: carbon dioxide, ammonia and nitrous oxide. It was found that the relative increase in volume of emission of carbon monoxide and non-methane volatile organic compounds is less than 10%, and nitrogen oxides and particulate matter less than 15%. The relative increase in carbon dioxide emission is approximately 14%, which corresponds to a relative increase in fuel consumption. The relative increase of volume of heavy metal emission is similar. The assessment of the energy emission factor (emission of pollution related to energy equal to used fuel) proves that - amongst pollutants harmful to health - for carbon monoxide and non-methane volatile organic compounds there is a relative reduction by approximately 5% in 2016, and for nitrogen oxides and particulate matter - increase by approximately (3-4)%.
The use of motor vehicles varies considerably under distinct traffic conditions: in cities, outside cities as well as on motor-ways and expressways. The impact of road traffic on the natural environment has been studied for many years, including in terms of the nature of the operation of motor vehicles. This problem is particularly important in highly urbanized areas, where traffic congestion is the source of increased emissions of harmful compounds contained in exhaust gases. For this reason, many cities have traffic restrictions, especially for those cars that do not meet the most stringent emission standards. Environmental protection is the driving force behind the development of modern combustion engine supply systems, which allow for proper control of the combustion of petroleum-derived fuels. The exhaust gas cleaning systems in the form of catalytic converters or particulate matter filters are also playing a very important role. Considerable differences in internal combustion engine operating states, both static and dynamic, result in important differences in pollutant emissions. Likewise, the national annual pollutant emission is affected by the share of distances travelled by vehicles under various traffic conditions. At the same time, it is very difficult to estimate exhaust emissions from road transport sources. Very interesting method of emission estimation is the application of the data included in the emission inventory which are a valuable source of information on exhaust emissions under various operating conditions. In the present study, the annual pollutant emissions were analyzed: at a national level (total pollutant emission) and in distinct traffic conditions. There were found large differences between individual pollutants’ shares in the emissions from vehicles under the tested traffic conditions. This is particularly evident for nitrogen oxides with the highest emission share outside cities, as opposed to other substances with the highest emission shares in cities, where traffic congestion is taking place.
Within the Institute of Environmental Protection - National Research Institute the Central Emission Database is being established. The Database will cover the most important emission sectors from anthropogenic activities, including usage of motor vehicles. The intensity of emissions of individual pollutants is the input data to air pollution dispersion models. Based on calculations performed by the air pollution dispersion models concentration of pollutants dispersed in atmospheric air (pollution immission) is provided. The annual average immision for a selected place in Poland is a measure of the threat to environment. In order to determine the intensity of pollutant emissions from motor vehicles it is necessary to recognize the intensity of vehicle motion and the volume of emission of pollutants depending on the type of vehicle motion. The task presented in this article is to determine the characteristics of pollutant emissions from motor vehicles depending on the type of their motion. The mean value of vehicle speeds was used to characterize the type of vehicle motion. The emission of pollutants from vehicles is therefore characterized by the dependence of road emissions of pollutants on the average speed of vehicles. The characteristics were determined for cumulated categories of motor vehicles: passenger cars, light commercial vehicles as well as heavy duty trucks and buses. The results of the inventory of pollutant emissions from motor vehicles in Poland in 2016 were used to determine the characteristics of pollutant emissions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.