Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Polyethylene terephthalate is a synthetic material known as PET. PET strapping bands is a material commonly used in all industries for packaging and bundling. The excessive use of this material has led to the pollution of the urban environment, which necessitated the search for effective solutions to dispose of this waste. The treatment and reuse of these materials is among the best solutions that contribute to reducing environmental pollution on the one hand and enabling the obtaining of economical products on the other hand. The main purpose of this experimental study is to valorize dune sand mortar and PET waste in the manufacture of cement mortar. It also aims to investigate the impact of the inclusion of recycled PET fibers on the physical and mechanical properties of the reinforced mortar. The study was carried out in several phases; after a physical and chemical characterization of the materials used, a method for the composition of mixtures was proposed, which is based on the progressive substitution of dune sand by recycled PET fibers. The quantity of cement added to each mixture is fixed at 450 g, and that of dune sand and fibers is taken as equal to 1350 g. In order to properly examine the influence of the incorporation of fibers on the properties of the reinforced mortar, the substitution rate of dune sand by the fibers varied from 0% to 2.5% with a step of 0.5%. For each mixture, many characteristics of the mortar were tested, such as consistency, bulk density, compressive strength, and flexural strength. The results obtained show that the incorporation of PET fibers has a significant effect on the fresh and hardened properties of the treated mortar.
EN
The purpose of this paper is to develop a framework for managing wastes resulting from the tire rubber valorization waste of quarry sand mortar. A research methodology was developed to achieve the above-mentioned main objective. To create a framework for use of crumb rubber in the production of quarry sand mortars, with adequate physical and mechanical properties to be used in a variety of construction applications. Testing included strength and thermal conductivity properties of the various mixture composition subjected to varying by 5%. 10%. 15% and 20% by quarry sand substitution. The internal microstructure, and phase composition of all mixture mortars, were investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS). The results show that increasing incorporation rate of additives significantly improves thermophysical properties of based materials, the hardened properties of the various mortars made are analyzed and compared, the experimental results revealed that; the addition of crumb rubber waste in the quarry sand mortar is beneficial for physical properties (Mv) mass loss, The results of mechanics strength of the rubber based quarry mortar studied are also significantly reduced.The addition of 5% to 20% rubber crumb in matrix and the replacement of sand by 20% of rubber in quarry mortar record the low thermal conductivity properties including that appropriate QS and CR levels may change the pattern of quarry sand mortar. witch explain by a Larger pore and higher porosity produce a less rigid and uniform matrix, meaning that the sonic pulses must travel through longer and more miscellaneous paths which improvement of insulation. The good performance of new materials encourages us to integrate them into the building envelope.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.