Niching is a group of techniques used in evolutionary algorithms, useful in several types of problems, including multimodal or nonstationary optimization. This paper investigates the applicability of these methods to evolutionary multi-agent systems (EMAS), a hybrid model combining the advantages of evolutionary algorithms and multi-agent systems. This could increase the efficiency of this type of algorithms and allow to apply them to a wider class of problems. As a starting point, a simple but flexible EMAS framework is proposed. Then, it is shown how to extend this framework in order to introduce niching, by adapting two classical niching methods. Finally, preliminary experimental results show the efficiency and the simultaneous discovery of multiple optima by this modified EMAS.
Computing applications such as metaheuristics-based optimization can greatly benefit from multi-core architectures available on modern supercomputers. In this paper, we describe an easy and efficient way to implement certain population-based algorithms (in the discussed case, multi-agent computing system) on such runtime environments. Our solution is based on an Erlang software library which implements dedicated parallel patterns. We provide technological details on our approach and discuss experimental results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.