In this paper, sufficient conditions have been obtained so that all oscillatory solutions of the n-th order differential equations with quasi derivatives tend to zero as t tends to infinity.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We establish sucient conditions for the linear func- tional differential equation of n-th order of the forms y(n)(t) + p(t)y(g(t)) = 0 and y(n)(t) - p(t)y(g(t)) = 0 to have property A and B, where p and g ϵ C ([σ, ∞), (0, ∞)), with g ϵ R and g(t) ≥ t, and n ≥ 2 is a positive integer
We consider the existence of at least three positive solutions of a nonlinear first order problem with a nonlinear nonlocal boundary condition given by [formula] where r : [0,1] → [0, ∞) is continuous; the nonlocal points satisfy [formula] the nonlinear function ƒi and [formula] are continuous mappings from [0,1] x [0,∞) → [0,∞) for i = 1,2,... ,m and j = 1, 2,. .. , n respectively, and λ > 0 is a positive parameter.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, necessary and sufficient conditions have been obtained for a class of forced superlinear second order neutral differential equations of Emden-Fowler type such that every solution of the equation is either oscillatory or tends to zero as t -> niekończoność
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.