We derive lower two-weight estimates for the essential norm (measure of noncompactness) for multilinear Hilbert and Riesz transforms, and Riesz potential operators in Banach function lattices. As a corollary we have appropriate results in weighted Lebesgue spaces. From these statements we conclude that there is no \((m+1)\)-tuple of weights \((v,w_1, \dots, w_m)\) for which these operators are compact from \(L^{p_1}_{w_1} \times \dots \times L^{p_m}_{w_m}\) to \(L^q_v\).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We investigate weak type estimates for maximal functions, fractional and singular integrals in grand Lebesgue spaces. In particular, we show that for the one-weight weak type inequality it is necessary and sufficient that a weight function belongs to the appropriate Muckenhoupt class. The same problem is discussed for strong maximal functions, potentials and singular integrals with product kernels.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.