The nature of intermolecular interactions for anthrone and anthraquinone differs due to the symmetry of substitution of the central benzene ring, i.e. anthrone substituted with only one keto group and anthraquinone substituted with two keto groups. In order to interpret the interactions among the molecules, the interaction energies between molecules in crystals were calculated using DFT B3LYP calculations. The results reveal the consistency between calculated “lattice energies” and theirs terms and thermodynamical properties as density, boiling point and melting point of examined compounds.
PL
Przeprowadzono obliczenia oddziaływań międzycząsteczkowych wykorzystując program CrystalExplorer17 z wykorzystaniem pakietu oprogramowania Gaussian09. Obliczenia DFT wykazały zgodność pomiędzy uzyskanymi wartościami energii „sieci krystalicznej” badanych związków i jej składowych z osobna a wybranymi do analizy doświadczanymi właściwościami termodynamicznymi jak gęstość materiału, temperatura wrzenia i temperatura topnienia badanych związków. Badania wykazały inny charakter oddziaływań zachodzących podczas procesu topnienia i podczas procesu wrzenia. Proces topnienia związany jest z całkowitą energią sieci. Temperatura wrzenia związana jest z zerwaniem odziaływań pomiędzy pojedynczymi cząsteczkami. Decydujące jest tu zerwanie oddziaływania dipolowego i dyspersyjnego.
The modification of electron states and the change in the geometry of the structure of molecule during hopping transport of charge carriers depends on the symmetry of the molecule. During electric transport the molecule reversibly transforms from neutral state to cation when hole conductivity occurs or to anion when electron conductivity occurs. The energies of orbitals HOMO and HOMO-1 of anthrone and anthrachinone are always negative, what allows for holes transport. Positive energies of LUMO and LUMO+1 orbitals of anion of anthrone and anthraquinone in structure of anion or neutral molecule make electron transport difficult.
PL
Wyniki obliczeń jednoznacznie wskazują na dużą stabilność kationów antrachinonu i antronu. Realizacja przewodnictwa dziur jest w tej sytuacji możliwa dla obu materiałów. Wysoka dodatnia wartość poziomów LUMO i LUMO+1 dla antrachinonu powyżej 1,8 eV nie pozwala na uzyskanie stabilnego przewodzenia elektronów w fazie stałej antrachinonu. Jednak ujemna wartość poziomu HOMO dla anionu pozwala na przejście cząsteczki w fazie stałej do podstawowego poziomu anionu w stanie jonizacji +1. Pozwala to na wykorzystanie antrachinonu w postaci fazy stałej dla potrzeb technologii wykorzystującej środowisko elektrochemiczne. Wysoka wartość dodatnia poziomów HOMO oraz LUMO i LUMO +1 dla anionu antronu utrudnia uzyskanie efektywnego przewodzenia elektronów dla zastosowań w technologii elektroniki organicznej. Jednak dzięki posiadaniu podstawnika, własności anionu antronu są korzystniejsze dla zastosowań niż własności anionu niepodstawionego antracenu. Pomimo podobieństwa cząsteczek i struktur, w jakich krystalizują, występuje znacząca różnica w wartości przerwy energetycznej Eg pomiędzy antronem i antrachinonem. Uzyskane wyniki wskazują na inne obszary możliwych zastosowań antrachinonu i antronu w elektronice organicznej. Wysoka wartość energii przerwy zabronionej może być korzystna dla zastosowań obu materiałów do wytwarzania warstw aktywnych w komórkach słonecznych, gdzie wymagana jest wysoka rezystywność ze względu na konieczność rozdziału generowanych ładunków.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.