The development, utilization, and maintenance of continuously operating reference stations (CORS) network are vital in many areas of surveying and geodesy, such as controlling geodetic networks, developing local ionospheric models, and estimating the tectonic plate movements. Accordingly, the Egyptian Surveying Authority (ESA) established a CORS network consisting of 40 stations covering the Nile valley and its delta in 2011. CORS collect global navigation satellite system (GNSS) data. Recently, Egypt has witnessed rapid growth in many infrastructure projects and the development of new cities on a national scale. Therefore, there is an urgent need to investigate the ESA-CORS accuracy; the quality of data from the ESA-CORS must be considered for monitoring continuous tectonic motion, coordinating changes, and for Egypt’s development plan. Contemporary research worldwide identified considerable benefits of the precise point positioning (PPP) solution of dual- or singlefrequency GNSS data. This study investigates the reliability of using the CSRS-PPP service for three consecutive observation days of 32 ESA-CORS networks in Egypt and the surrounding six international GNSS services (IGS)-CORS. For ESA-CORS, the PPP solution showed a root mean square error (RMSE) value of 6 mm (standard deviation [SD] = 3–4 mm) in east and north; for the height direction, the solution indicated an RMSE value of 22 mm (SD was about 14 mm). At a confidence level of 95%, this study revealed that SD95% was 2 mm in east and north directions and 6-7 mm for the height direction. This study shows that the PPP solution shown from the ESA-CORS stations is associated with two times better for horizontal and four times for the height direction than the delivered form ESA-CORS stations.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the developing countries, cost-effective observation techniques are very important for earthwork estimation, map production, geographic information systems, and hydrographic surveying. One of the most cost-effective techniques is Precise Point Positioning (PPP); it is a Global Navigation Satellite Systems (GNSS) positioning technique to compute precise positions using only a single GNSS receiver. This study aims to evaluate the efficiency of using Global Positioning System (GPS) and GPS/ Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) post-processed kinematic PPP solution for digital elevation model (DEM) production, which is used in earthwork estimation. For this purpose, a kinematic trajectory has been observed in New Aswan City in an open sky area using dual-frequency GNSS receivers. The results showed that, in case of using GPS/GLONASS PPP solution to estimate volumes, the error in earthwork volume estimation varies between 0.07% and 0.16% according to gridding level. On the other hand, the error in volume estimation from GPS PPP solution varies between 0.40% and 0.99%.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Nowadays, Precise Point Positioning (PPP) is a very popular technique for Global Navigation Satellite System (GNSS) positioning. The advantage of PPP is its low cost as well as no distance limitation when compared with the differential technique. Singlefrequency receivers have the advantage of cost effectiveness when compared with the expensive dual-frequency receivers, but the ionosphere error makes a difficulty to be completely mitigated. This research aims to assess the effect of using observations from both GPS and GLONASS constellations in comparison with GPS only for kinematic purposes using single-frequency observations. Six days of the year 2018 with single-frequency data for the Ethiopian IGS station named “ADIS” were processed epoch by epoch for 24 hours once with GPS-only observations and another with GPS/GLONASS observations. In addition to “ADIS” station, a kinematic track in the New Aswan City, Aswan, Egypt, has been observed using Leica GS15, geodetic type, dual-frequency, GPS/GLONASS GNSS receiver and singlefrequency data have been processed. Net_Diff software was used for processing all the data. The results have been compared with a reference solution. Adding GLONASS satellites significantly improved the satellite number and Position Dilution Of Precision (PDOP) value and accordingly improved the accuracy of positioning. In the case of “ADIS” data, the 3D Root Mean Square Error (RMSE) ranged between 0.273 and 0.816 m for GPS only and improved to a range from 0.256 to 0.550 m for GPS/GLONASS for the 6 processed days. An average improvement ratio of 24%, 29%, 30%, and 29% in the east, north, height, and 3D position components, respectively, was achieved. For the kinematic trajectory, the 3D position RMSE improved from 0.733 m for GPS only to 0.638 m for GPS/GLONASS. The improvement ratios were 7%, 5%, 28%, and 13% in the east, north, height, and 3D position components, respectively, for the kinematic trajectory data. This opens the way to add observations from the other two constellations (Galileo and BeiDou) for more accuracy in future research.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.