The flow of a micropolar fluid in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using similar transformations. Homotopy analysis method (HAM) is employed to obtain the expressions for the velocity fields and microrotation fields. Graphs are sketched for the effects of some values of parameters, especially the expansion ratio, on the velocity and microrotation fields and associated dynamic characteristics are analyzed in detail.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present work investigates the unsteady, imcompressible flow of a micropolar fluid between two orthogonally moving porous coaxial disks. The lower and upper disks are rotating with the same angular speed in counter directions. The flows are driven by the contraction and the rotation of the disks. An extension of the Von Kármán type similarity transformation is proposed and is applied to reduce the governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. These differential equations with appropriate boundary conditions are responsible for the flow behavior between large but finite coaxial rotating disks. The analytical solutions are obtained by employing the homotopy analysis method. The effects of some various physical parameters like the expansion ratio, the rotational Reynolds number, the permeability Reynolds number, and micropolar parameters on the velocity fields are observed in graphs and discussed in detail.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.