We present a new characterization of Lebesgue measurable functions; namely, a function f:[0,1]→ ℝ is measurable if and only if it is first-return recoverable almost everywhere. This result is established by demonstrating a connection between almost everywhere first-return recovery and a first-return process for yielding the integral of a measurable function.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.