Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom nr 16(4)
291--307
EN
The article describes the estimation of covariance parameters in Least Squares Collocation (LSC) by Leave-One-Out (LOO) validation, which is often considered as a kind of cross validation (CV). Two examples of GNSS/leveling (GNSS/lev) geoid data, characterized by different area extent and resolution are applied in the numerical test. A special attention is focused on the noise, which is not correlated in this case. The noise variance is set to be homogeneous for all points. Two parameters in three covariance models are analyzed via LOO, together with a priori noise standard deviation, which is a third parameter. The LOO validation finds individual parameters for different applied functions i.e. different correlation lengths and a priori noise standard deviations. Diverse standard deviations of a priori noise found for individual datasets illustrate a relevance of applying LOO in LSC. Two examples of data representing different spatial resolutions require individual noise covariance matrices to obtain optimal LSC results in terms of RMS in LOO validation. The computation of appropriate a priori noise variance is however difficult via typical covariance function fitting, especially in the case of sparse GNSS/leveling geoid data. Therefore LOO validation may be helpful in describing how the a priori noise parameter may affect LSC result and a posteriori error.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.