Let α∈[0,1] be a fixed parameter. We show that for any nonnegative submartingale X and any semimartingale Y which is α-subordinate to X, we have the sharp estimate [WZÓR]. Here W is the weak-L∞space introduced by Bennett, DeVore and Sharpley. The inequality is already sharp in the context of α-subordinate Itô processes.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let X = (Xt) t ≥ 0 be a bounded martingale and let Y = (Yt) t ≥ 0 be differentially subordinate to X. We prove that if 1 ≤ p < ∞ and W = (Wt) t ≥ 0 is an Ap weight of characteristic [W] Ap, then ∥Y∥Lp, ∞ (W) ≤ Cp [W]Ap∥X∥L∞(W). The linear dependence on [W]Ap is shown to be the best possible. The proof exploits a weighted exponential bound which is of independent interest. As an application, a related estimate for the Haar system is established.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper is devoted to sharp inequalities between moments of nonnegative supermartingales and their strong subordinates. Analogous estimates hold true for stochastic integrals with respect to a nonnegative right-continuous supermartingale. Similar inequalities are established for smooth functions on Euclidean domains.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let f be a martingale taking values in a Banach space B and let S(f) be its square function. We show that if B is a Hilbert space, then P(S(f) ≥1)≤√e∥f∥1and the constant √e is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if B is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Assume that u, v are conjugate harmonic functions on the unit disc of C, normalized so that u(0)=v(0)=0. Let u∗, |v|∗ stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate... [formula]. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined on Euclidean domains. The proof exploits a novel estimate for orthogonal martingales satisfying differential subordination.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let ƒ be a nonnegative submartingale and S(ƒ) denote its square function. We show that for any λ > 0, λP(S(ƒ) ≥ λ) ≤ π/2||ƒ||1, and the constant π/2 is the best possible. The inequality is strict provided ||ƒ||1 ≠ 0.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Consider the sequence (Cn)n≥1 of positive numbers defined by C1=1 and Cn+1=1+C2n/4, n=1,2,…. Let M be a real-valued martingale and let S(M) denote its square function. We establish the bound E|Mn|≤CnESn(M), n=1,2,…, and show that for each n, the constant Cn is the best possible.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.