Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
|
|
tom Vol. 63, no. 1
73--88
EN
Let α∈[0,1] be a fixed parameter. We show that for any nonnegative submartingale X and any semimartingale Y which is α-subordinate to X, we have the sharp estimate [WZÓR]. Here W is the weak-L∞space introduced by Bennett, DeVore and Sharpley. The inequality is already sharp in the context of α-subordinate Itô processes.
2
Content available remote Weighted weak-type inequality for martingales
100%
|
|
tom Vol. 65, no. 2
165--175
EN
Let X = (Xt) t ≥ 0 be a bounded martingale and let Y = (Yt) t ≥ 0 be differentially subordinate to X. We prove that if 1 ≤ p < ∞ and W = (Wt) t ≥ 0 is an Ap weight of characteristic [W] Ap, then ∥Y∥Lp, ∞ (W) ≤ Cp [W]Ap∥X∥L∞(W). The linear dependence on [W]Ap is shown to be the best possible. The proof exploits a weighted exponential bound which is of independent interest. As an application, a related estimate for the Haar system is established.
EN
The paper is devoted to sharp inequalities between moments of nonnegative supermartingales and their strong subordinates. Analogous estimates hold true for stochastic integrals with respect to a nonnegative right-continuous supermartingale. Similar inequalities are established for smooth functions on Euclidean domains.
EN
Let f be a martingale taking values in a Banach space B and let S(f) be its square function. We show that if B is a Hilbert space, then P(S(f) ≥1)≤√e∥f∥1and the constant √e is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if B is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.
5
Content available remote Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales
100%
|
|
tom Vol. 61, no 3-4
209--218
EN
Assume that u, v are conjugate harmonic functions on the unit disc of C, normalized so that u(0)=v(0)=0. Let u∗, |v|∗ stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate... [formula]. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined on Euclidean domains. The proof exploits a novel estimate for orthogonal martingales satisfying differential subordination.
6
Content available remote Weak type inequality for the square function of a nonnegative submartingale
100%
EN
Let ƒ be a nonnegative submartingale and S(ƒ) denote its square function. We show that for any λ > 0, λP(S(ƒ) ≥ λ) ≤ π/2||ƒ||1, and the constant π/2 is the best possible. The inequality is strict provided ||ƒ||1 ≠ 0.
7
Content available remote Moment Inequality for the Martingale Square Function
100%
|
2013
|
tom Vol. 61, no 2
169--180
EN
Consider the sequence (Cn)n≥1 of positive numbers defined by C1=1 and Cn+1=1+C2n/4, n=1,2,…. Let M be a real-valued martingale and let S(M) denote its square function. We establish the bound E|Mn|≤CnESn(M), n=1,2,…, and show that for each n, the constant Cn is the best possible.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.