Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper discusses an idea of nanoparticles application to the flotation process. Due to the growing awareness of the environmental impact of industry and legal restrictions, the directions of research on new chemicals used in mineral processing, as well as in the other branches of industry are changing. The flotation reagents of the future should be, or are expected to be, readily biodegradable, but also their products should be harmless to the environment. A review of the works presented here presents an overview of the state-of-the-art application of nanostructures from early reported polystyrene nanoparticles to the most promising cellulose nanostructures which can be successfully adapted to the desired amphiphilicity parameters through simple functionalization. Limitations on the use of such nano-sized entities related to control aggregation in the flotation process and the ability to adsorb at interphase boundaries are also presented. Overall, nanoparticles can become universal flotation collectors and also an alternative to conventionally used hydrocarbon-based reagents.
EN
Currently, municipal waste biogas plant digestate is treated both as an alternative fertilizer and as a potential source of water. In practice, before advanced purification technologies, the liquid fraction of the digestate is subjected to pretreatment, aiming also at recovering the dissolved nutrients and making them into a concentrated fertilizer, e.g., by struvite precipitation. In this study, the possibility of struvite (MgNH4PO4 center dot 6H2O) precipitation from the liquid fraction of municipal digestate was determined. In the experiments, MgCl2 and NaH2PO4 were added to the treated solution as a complementary source of magnesium and phosphorus. Their doses were chosen to achieve the most favorable conditions for controlling struvite precipitation. The results obtained confirmed the possibility of struvite precipitation from the liquid fraction of municipal digestate. The process realized for pH 9.0, temperature 20-23 degrees C, molar ratio N:Mg:P = 5.13:1:1 and 1:1.1:1.1, reaction time 5 min with a stirring rate of 160 rpm, provides a high efficiency of struvite precipitation from the liquid fraction of digestate. From the viewpoint of process economics (less amount of reactants added with similar process efficiency), a molar ratio of N:Mg:P = 1:1.1:1.1 was found to be optimal for the reaction of precipitation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.