Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On starlikeness of certain integral transforms
100%
|
|
nr 3
227-232
EN
Let A denote the class of normalized analytic functions in the unit disc U = {z: |z| < 1}. The author obtains fixed values of δ and ϱ (δ ≈ 0.308390864..., ϱ ≈ 0.0903572...) such that the integral transforms F and G defined by $F(z) = ∫_0^z (f(t)/t)dt$ and $G(z) = (2/z) ∫_0^z g(t)dt$ are starlike (univalent) in U, whenever f ∈ A and g ∈ A satisfy Ref'(z) > -δ and Re g'(z) > -ϱ respectively in U.
2
63%
|
|
nr 2
177-186
EN
Let 𝔻 denote the open unit disk and f:𝔻 → ℂ̅ be meromorphic and univalent in 𝔻 with a simple pole at p ∈ (0,1) and satisfying the standard normalization f(0) = f'(0)-1 = 0. Also, assume that f has the expansion $f(z) = ∑_{n=-1}^{∞} aₙ(z-p)ⁿ$, |z-p| < 1-p, and maps 𝔻 onto a domain whose complement with respect to ℂ̅ is a convex set (starlike set with respect to a point w₀ ∈ ℂ, w₀ ≠ 0 resp.). We call such functions concave (meromorphically starlike resp.) univalent functions and denote this class by $Co(p)(Σ^{s}(p,w₀)$ resp.). We prove some coefficient estimates for functions in these classes; the sharpness of these estimates is also established.
3
Content available remote Convolution theorems for starlike and convex functions in the unit disc
51%
EN
Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f'(0) − 1 = 0. For β < 1, let $P⁰_{β} = {f ∈ A: Re f'(z) > β, z ∈ Δ}$. For λ > 0, suppose that 𝓕 denotes any one of the following classes of functions: $M^{(1)}_{1,λ} = {f ∈ 𝓐 : Re{z(zf'(z))''} > -λ, z ∈ Δ}$, $M^{(2)}_{1,λ} = {f ∈ 𝓐 : Re{z(z²f''(z))''} > -λ, z ∈ Δ}$, $M^{(3)}_{1,λ} = {f ∈ 𝓐 : Re{1/2 (z(z²f'(z))'')' - 1} > -λ, z ∈ Δ}$. The main purpose of this paper is to find conditions on λ and γ so that each f ∈ 𝓕 is in $𝓢_{γ}$ or $𝒦_{γ}$, γ ∈ [0,1/2]. Here $𝓢_{γ}$ and $𝒦_{γ}$ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number of convolution theorems, namely the inclusions $M_{1,α} ∗ 𝓖 ⊂ 𝓢_{γ}$ and $M_{1,α} ∗ 𝓖 ⊂ 𝒦_{γ}$, where 𝓖 is either $𝓟⁰_{β}$ or $M_{1,β}$. Here $M_{1,λ}$ denotes the class of all functions f in 𝓐 such that Re(zf''(z)) > -λ for z ∈ Δ.
4
Content available remote Region of variability for spiral-like functions with respect to a boundary point
51%
EN
For μ ∈ ℂ such that Re μ > 0 let $ℱ_{μ}$ denote the class of all non-vanishing analytic functions f in the unit disk 𝔻 with f(0) = 1 and $Re(2π/μ zf'(z)/f(z) + (1+z)/(1-z)) > 0$ in 𝔻. For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ 𝔻̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class $ℱ_{μ}(λ) = {f ∈ ℱ_{μ}: f'(0) = (μ/π)(λ - 1) and f''(0) = (μ/π)(a(1-|λ|²) + (μ/π)(λ-1)² - (1-λ²))}$. In the final section we graphically illustrate the region of variability for several sets of parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.