The iron catalyst precursor promoted with Al2O3, CaO, and Li2O was obtained applying the fusing method. Lithium oxide forms two phases in this iron catalyst: a chemical compound with iron oxide (Li2Fe3O4) and a solid solution with magnetite. The catalyst promoted with lithium oxide was not fully reduced at 773 K, while the catalyst containing potassium was easily reducible at the same conditions. After reduction at 873 K the activity of the catalyst promoted with lithium oxide was 41% higher per surface than the activity of the catalyst promoted with potassium oxide. The concentration of free active sites on the surface of the catalyst containing lithium oxide after full reduction was greater than the concentration of free active sites on the surface of the catalyst promoted with potassium oxide.
A series of nanocomposite graphene/CoFe2 O4 and graphene/NiFe2 O4 hybrid materials was synthesized via facile, one-pot solvothermal route. The materials were obtained using two pressure methods: synthesis in the autoclave and synthesis in the microwave solvothermal reactor. The use of a microwave reactor enabled to significantly shorten the synthesis time up to 15 min. All the syntheses were carried out in a solution of ethanol. The effect of processing conditions and composite composition on the physicochemical properties and electric conductivity was studied. The specific surface area, density, morphology, phase composition, thermal properties and electric conductivity of the obtained composites were investigated. The results of studies of composites obtained in an autoclave and in a microwave reactor were compared.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.