Pseudo BCK-algebras are algebras (A,approaches 1) of type (2, 2, 0) which generalize BCK-algebras in such a way that if the operations-› and ->coincide then (A,-›, 1) is a BCK-algebra. They can be also viewed as {-›,->, 1}-subreducts of non-commutative integral residuated lattices. In the paper, we study pseudo BCK-algebras whose underlying posets are semilattices or lattices; we call them pseudo BCK-join-semilattices, pseudo BCK-meet-semilattices and pseudo BCK-lattices, respectively. After describing their congruence properties we deal mainly with prime deductive systems of pseudo BCK-join-semilattices.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to characterize BCC-algebras which are term equivalent to MV-algebras. It turns out that they arę just the bounded commutative BCC-algebras. Purther, we characterize congruence kernels as deductive systems. The explicit description of a principal deductive system enables us to prove that every subdirectly irreducible bounded commutatwe BCC-algebra is a chain (with respect to the induced order) .
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.