The harmonic Cesàro operator 𝓒 is defined for a function f in $L^{p}(ℝ)$ for some 1 ≤ p < ∞ by setting $𝓒(f)(x): = ∫^{∞}_{x} (f(u)/u)du$ for x > 0 and $𝓒(f)(x): = -∫_{-∞}^{x} (f(u)/u)du$ for x < 0; the harmonic Copson operator ℂ* is defined for a function f in $L¹_{loc}(ℝ)$ by setting $𝓒*(f)(x): = (1/x) ∫^{x₀} f(u)du$ for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If $f ∈ L^{p}(ℝ)$ for some 1 ≤ p ≤ 2, then $(𝓒(f))^{∧}(t) = 𝓒*(f̂)(t)$ a.e., where f̂ denotes the Fourier transform of f. (ii) If $f ∈ L^{p}(ℝ)$ for some 1 < p ≤ 2, then $(𝓒*(f))^{∧}(t) = 𝓒(f̂)(t)$ a.e. As a by-product of our proofs, we obtain representations of $(𝓒(f))^{∧}(t)$ and $(𝓒*(f))^{∧}(t)$ in terms of Lebesgue integrals in case f belongs to $L^{p}(ℝ)$ for some 1 < p ≤ 2. These representations are valid for almost every t and may be useful in other contexts.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We extend the classical theorems of I. I. Privalov and A. Zygmund from single to multiple conjugate functions in terms of the multiplicative modulus of continuity. A remarkable corollary is that if a function f belongs to the multiplicative Lipschitz class $Lip(α₁,..., α_N)$ for some $0 < α₁,...,α_N < 1$ and its marginal functions satisfy $f(·,x₂,...,x_N) ∈ Lip β₁,...,f(x₁,...,x_{N-1},·) ∈ Lip β_N$ for some $0 < β₁,...,β_N < 1$ uniformly in the indicated variables $x_{l}$, 1 ≤ l ≤ N, then $f̃^{(η₁, ..., η_N)} ∈ Lip(α₁, ..., α_N)$ for each choice of $(η₁,...,η_N)$ with $η_{l} = 0$ or 1 for 1 ≤ l ≤ N.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let H be a separable complex Hilbert space, 𝓐 a von Neumann algebra in 𝓛(H), ϕ a faithful, normal state on 𝓐, and 𝓑 a commutative von Neumann subalgebra of 𝓐. Given a sequence (Xₙ: n ≥ 1) of operators in 𝓑, we examine the relations between bundle convergence in 𝓑 and bundle convergence in 𝓐.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW