In this study, we considered the problem of controlling a prosthetic hand with noisy electromyography (EMG) and mechanomyography (MMG) signals. Several dimensionality reduction methods were analyzed to assess their efficiency at classifying these signals, which were registered during the performance of grasping movements with various objects. Using the cross-validation technique, we compared various dimensionality reduction methods, such as principal components analysis, nonnegative matrix factorization, and some tensor decomposition models. The experimental results demonstrated that the high-est classification accuracy (exceeding 95% for all subjects when classifying 11 grasping movements) and lowest computational complexity were obtained when higher-order singular value decomposition was applied to a multi-way array of multi-channel spectrograms, where the temporal EMG/MMG signals from all channels were concatenated.
Information extraction is a very important problem nowadays. In diagnostics, it is particularly useful when one desires to isolate information about machine damage from a measured diagnostic signal. The method presented in this paper utilizes the idea that is based on a very important topic in numerical algebra, which is nonnegative matrix factorization. When applied to the matrix of multidimensional representation of the measured data, it can extract very useful information about the events which occur in the signal and are not recognizable otherwise. In the presented methodology, we use the algorithm called Semi-Binary Nonnegative Matrix Factorization (SB-NMF), and apply it to a time-frequency representation of the real-life vibration signal measured on faulty bearing operating in a belt conveyor driving station. Detected impulses of local damage are clearly identifiable. Performance of the algorithm is very satisfying in terms of time efficiency and output signal quality.
PL
Ekstrakcja informacji jest aktualnym kierunkiem badań. Jest ona szczególnie użyteczna, kiedy próbuje się wyizolować informację na temat uszkodzenia maszyny z zarejestrowanego sygnału diagnostycznego. Metoda zaprezentowana w niniejszej pracy bazuje na bardzo ważnym zagadnieniu algebry numerycznej, jakim jest nieujemna faktoryzacja macierzy. Kiedy jest ona zastosowana do analizy macierzy będącej wielowymiarową reprezentacją sygnału wejściowego, może wyizolować informację istotną z punktu widzenia procesów zachodzących w sygnale, a która nie jest rozpoznawalna w inny sposób. Przedstawiona metodologia korzysta z algorytmu znanego jako półbinarna nieujemna faktoryzacja macierzy, zastosowanego do reprezentacji czasowo-częstotliwościowej rzeczywistego sygnału drganiowego, zmierzonego na uszkodzonym łożysku pracującym w stacji napędowej przenośnika taśmowego. Wykryte impulsy związane z uszkodzeniem lokalnym zostały wyraźnie zidentyfikowane. Działanie algorytmu jest satysfakcjonujące w kwestii wydajności obliczeniowej oraz jakości otrzymanego wyniku.
System PROTEUS ma za zadanie stworzenie nowej jakości w zarządzaniu kryzysowym i działaniach ratowniczych. Innowacyjne projekty elementów systemu, w szczególnosci częściowo autonomicznych robotów mobilnych oraz modułów lokalizacji dla ludzi w budynkach wymagają nowych rozwiązań technicznych. Niniejszy artykuł prezentuje w jaki sposób najnowsze technologie mogą być ze sobą połączone w celu stworzenia jakościowo nowych modułów lokalizacji, które spełniają ścisłe wymagania środowiskowe, zasilania, wielkości i dokładności.
EN
The PROTEUS system will set a new standard in crisis management and rescue operations. The innovative design of partially autonomous mobile robots and modules for people location in buildings requires new technical solutions. This article presents how the recent technologies can be combined in order to design brand-new location modules that fulfill strict environmental, power supply, size and accuracy requirements.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.