Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2017
|
tom nr 4
102--106
PL
Klasyczny schemat eksploracji danych z nadzorem zawiera etap klasyfikacji, poprzedzony wstępnym przetwarzaniem danych. Dyskretyzacja danych numerycznych stanowi ważny element przetwarzania wstępnego. Klasyczne podejście nie zapewnia wykorzystania wiedzy zdobytej podczas dyskretyzacji danych w etapie klasyfikacji. Prowadzi to do zwiększenia zasobów potrzebnych do obliczeń. W artykule przedstawiono nowatorską metodę klasyfikacji danych na podstawie modelu sekwencyjnej dyskretyzacji. Opisano założenia i kroki algorytmu, przedstawiono przykłady, ilustrujące działanie metody w zależności od wybranych parametrów, a także wyniki przeprowadzonych eksperymentów.
EN
The classic scheme of supervised data mining includes the step of classification preceded by data preprocessing. Numeric data discretization is an important part of the preprocessing. The classic approach does not allow to use the knowledge gained in the discretization stage in the following classification. This leads to an increase of resources needed for calculations. The paper proposes the novel method of data classification based on the model of sequential discretization. The assumptions and steps of the proposed algorithm have been described. The examples showing how method results change depending on the parameters' values have been presented. The paper contains the results of conducted experiments.
PL
Dyskutowana jest nowa metoda indukcji reguł decyzyjnych. W przeciwieństwie do klasycznej metody sekwencyjnego pokrywania stosuje się w niej dwustopniowy proces selekcji reguł, w którym pojedyncze obiekty są uogólniane w celu uzyskania zbioru reguł minimalnych. Następnie rodzina wszystkich minimalnych reguł jest selekcjonowana wydajnymi algorytmami heurystycznymi. Przedstawione wyniki eksperymentów wskazują, że metoda znacząco usprawnia proces indukcji reguł decyzyjnych.
EN
A new method of solving the rule induction problem is discussed. The method is different to the classical approach using the so called sequential covering strategy. The main idea is to use the two stage selection process where single objects are considered in order to find whole sets of minimal rules. Next the family of minimal rules is selected using efficient highly-heuristic algorithms. The presented results of experiments with typical databases indicate that the proposed approach significantly improves the efficiency of the rule induction process.
PL
Dyskutowane są możliwości zastosowania metod syntezy logicznej w zadaniach eksploracji danych. W szczególności omawiane jest zastosowanie metody uzupełnienia funkcji boolowskiej do najważniejszych procedur eksploracji danych, takich jak ich dyskretyzacja, indukcja reguł oraz redukcja atrybutów. Pokazano, że metody syntezy logicznej skutecznie usprawniają te procedury i z powodzeniem mogą być zastosowane do rozwiązywania zadań eksploracji danych w medycynie i telekomunikacji.
EN
The article discusses the possibilities of application of logic synthesis methods in data mining tasks. The main idea is to use the complement of Boolean function method from logic synthesis in the most important data mining procedures such as data discretization, induction of rules and reduction of attributes. It is shown that by applying specialized logic synthesis methods, these three issues can be effectively improved and successfully used for solving data mining tasks in medicine and telecommunications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.