In this research, an Al–Mg–Si–Ag multilayered coating with different amounts of silver additive was deposited on the AA2024 substrate using the friction surfacing process to investigate the microstructure, corrosion, and wear characteristics of the structure. The results showed that the silver-containing coating layer had a lower deposition rate and efficiency than coating without the silver additive. Owing to the lower temperature than silver-free coating and the presence of silver-rich particles acting as a barrier to grain boundary movement, no significant difference was found in grain size of different layers of the silver-containing coating. After aging heat treatment of the silver-containing coating, the Q (Al4(Cu, Ag) Mg4Si4) precipitates were formed as part of the silver-rich particles began to dissolve. After aging heat treatment, the top layer of the silver-containing coating showed 16% higher hardness than the AA2024 substrate. The wear rate of coating containing 13 wt% silver was 37% lower than the AA2024 substrate. The corrosion current density was reduced by approximately 97% and 99% in the silver-containing sample as compared to the sample devoid of silver and AA2024 substrate. With increasing silver content in the coated layer, the wear mechanism transitions from a combination of abrasive and adhesive wear mechanisms to an abrasive wear mechanism.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.