Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom 39
1-106
PL
W pracy przedstawiono zastosowanie analogii termoelektrycznej poprzez wykorzystanie metody potencjałów węzłowych do utworzenia zastępczej sieci cieplnej (zsc) w celu sformułowania matematycznego modelu do analizy słonecznych instalacji ciepłej wody użytkowej. ZSC ma postać obwodu RC i składa się z 6 węzłów symulujących poszczególne elementy instalacji i gałęzi zawierających opory cieplne wymiany ciepła pomiędzy węzłami, dla każdego z węzłów sformułowano równanie bilansu cieplnego, a zatem powstał układ sześciu równań. W celu ich rozwiązania ułożono algorytm symulacyjny przy pomocy pakietu MathCad 7.0 służący naukowo-badawczej analizie termicznej a następnie wykonano pakiet symulacyjny w wersji użytkowej. Wykonano modele i przeprowadzono symulacje dla ustalonego i nieustalonego stanu pracy instalacji, zaprezentowano wyniki przeprowadzonych pomiarów w instalacji doświadczalnej i dokonano analizy porównawczej wyników symulacji z wynikami pomiarów. Potwierdziła ona przydatność modelu i pakietu symulacyjnego również w warunkach klimatycznych regionu Polski środkowo-wschodniej uznanej za region drugi w kraju pod względem dostępności energii promieniowania słonecznego (eps)o dużych możliwościach jej wykorzystania na terenach rolniczych. Pakiet symulacyjny jest głównym narzędziem opisanym w pracy i składa się z następujących sekwencji: 1. Wprowadzenie danych, 2. Obliczenia rezystancji cieplnych, 3. Obliczenia stanu ustalonego, 4. Obliczenia stanu nieustalonego. Narzędzie to jest uniwersalne i umożliwia dowolne rozszerzanie modelu ZSC o dodatkowe elementy, liczbową i graficzną prezentację wyników, w tym także quasi-przestrzenną prezentację wyników dla stanu przejściowego. Użytkowa wersja programu przeznaczona dla inżynierów projektantów takich systemów jest przyjazna dla użytkownika i jest dostępna także w wersji angielskiej. Algorytmy umożliwiają symulację stanów przejściowych w zależności zarówno od warunków pogodowych jak i wewnętrznych parametrów systemu. Praca prezentuje wyniki symulacji przeprowadzone w różnych zakresach wymuszeń. Analiza stanu niestacjonarnego wskazuje na nowe aspekty pracy termicznych instalacji słonecznych. Poszczególne opory cieplne są obliczane w ścisłej zgodności z zasadami wymiany ciepła odbywającej się na drodze przewodzenia, konwekcji i promieniowania, zaprezentowane przykłady symulacji przedstawiono na wykresach wykazujących zależności wzglądem wymuszeń zewnętrznych i wewnętrznych parametrów układu. Pokazują one m.in. zmienność temperatur w poszczególnych węzłach zależną od różnej dostępności eps i innych warunków pogodowych.
EN
The publication presents the use of a method called Equivalent Thermal Network used to formulate mathematical model suitable for SDHW system analyses. The method makes the use of a thermal - electric analogy, in particular, the node potential method to formulate a mathematical model suitable for heating system transient performance analyses on the example of a solar thermal system. The Equivalent Thermal Network modelling such system has been composed. The network is constructed as RC circuits and consists of nodes and branches. The assumption assigns one node to each thermal element and thus the branches model the heat transfer between them. Each node has its thermal balance equation and they make up a system of six linear and the first order differential equations relevant to the presented example. Composed algorithms make possible to simulate transients in dependence either on weather conditions or system parameters. The work provides results of simulations performed at different ranges of inputs. The transient analysis adds new aspects to the thermal performance of such systems. Comparisons with measurements taken on a real object, which is a SDHW system, prove the usefulness of the method particularly for East-European climatic conditions focused in the central eastern region of Poland which is supposed to be the second best solar region in the country. The main tool described in the work is a simulation programme composed on the basis of MathCad2000 algorithms used for the designing, analyses and diagnostics. The algorithms cover four sequences: 1. Data introduction, 2. Computations of heat transfer coefficients, 3. Steady state computations of node temperatures, 4. Transient computations and instant node temperature results. This tool is versatile and enables simple introduction of new elements and extensions of the network and quasi-spatial graphic presentations of transient results. These simulation algorithms are in Polish as predicted for the target group which are engineers and designers in the region, but also English version is available. Particular thermal resistances are computed in strict accordance to heat transfer through radiation, convection and conductance. The examples of steady state and transient simulation results in all nodes are presented in figures, which show the simulation of their dependence on external inputs and system features and give the image of how temperatures in nodes change at different solar energy availability and other weather conditions.
EN
The paper presents the use of a method called Equivalent Thermal Network used to formulate mathematical model suitable for SDHW system analyses. Composed algorithms make it possible to perform computer simulations either of weather conditions or system parameters and to determine their influence on the system thermal performance and thus can be used by solar system designers. Steady state analysis confirms that the model is correct and the transient analysis adds new aspects to the thermal performance of such systems. Comparisons with measurements taken on a real object prove the usefulness of the method particularly for local conditions.
EN
The paper describes the analyses of electrostatic and thermal fields in selected rural objects. The analyses are performed by FLUX 2D/3D software. The heat transfer analysis through solar walls (Trombe) i.e. solar passive system for optimal use of natural environment in the Polish climatic conditions is also presented. The simulations are presented for a transient heat transfer at 1100 s and after 1 hour.
PL
Artykuł dotyczy analizy pola temperatury oraz transportu ciepła w wybranych obiektach spotykanych w rolnictwie. Analiza została wykonana za pomocą oprogramowania do dwuwymiarowej analizy pola CEDRAT FLUX 2D. Przeprowadzono analizę transportu ciepła w przegrodach budowlanych znanych pod nazwą ściany Trombe’a, służących biernemu pozyskiwaniu energii słonecznej dla maksymalnego wykorzystania warunków naturalnych w obiektach budowlanych w warunkach klimatycznych naszego kraju. Zaprezentowano symulacje nieustalonej wymiany ciepła przez przegrodę w postaci map izoterm dla 1100 sekund i po 1 godz.
EN
The paper describes the analysis of electrostatic field in selected rural objects. The analysis is performed by FLUX 3D software. The model of a winding covered with a dielectric dust of organic origin is presented. The analysis was carried out in the dust covering supplied winding. The paper presents electrostatic field and intensity in the dust and in winding insulation.
PL
Artykuł dotyczy analizy pola elektrostatycznego w wybranych obiektach spotykanych w rolnictwie. Analiza została wykonana za pomocą oprogramowania do trójwymiarowej analizy pola CEDRAT FLUX 3D. Opracowano model uzwojenia pokrytego pyłem dielektrycznym pochodzenia roślinnego. Przeprowadzono analizę pola elektrostatycznego w pyle pokrywającym uzwojenie zasilane napięciem stałym. Przedstawiono rozkłady pola elektrostatycznego oraz natężenia pola w badanym pyle.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.