We construct $𝓒^{∞}$ maps T on the interval and on the circle which are Lebesgue exact preserving an absolutely continuous infinite measure μ ≪ λ, such that for any probability measure ν ≪ λ the sequence $(n^{-1} ∑_{k=0}^{n-1} ν∘T^{-k})_{n≥1}$ of arithmetical averages of image measures does not converge weakly.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector (Zₙ,Sₙ), where Zₙ and Sₙ are respectively the time of the last visit before time n to, and the occupation time of, a suitable set Y of finite measure.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.