Purpose: To ensure an adequate level of accuracy, it is rational to study the ponderomotor forces of the ring, which drive a hollow disk of variable thickness, hung on the ring. Design/methodology/approach: The solution of the motion problem of a hollow disk of variable thickness suspended on a force ring of rectangular cross section is based on the method of solving the equations of the theory of thermoelasticity. The stress-strain state, as well as the motion of the specified body of rotation, the disk, in studies in a cylindrical coordinate system, under the action of ponderomotor forces. Findings: The motion equation of a hollow disk hung on a force ring-torus is made, exact solutions of the motion equations of a ring in the torus form of rectangular cross section are found. New component expressions of ponderomotor forces, which appear from the action of the ring's own electromagnetic field and cause the motion of a hollow disk, have been found on the basis of Maxwell's equations. It is proved that at high speeds and low natural accelerations the stress - strain state of the disk material does not cause the destruction of the structure. Research limitations/implications: Calculations of ponderomorphic forces are valid for the ring, which drives a hollow disk of variable thickness, hung on the ring. Practical implications: It is proved that at high velocities and small natural accelerations the stress-strain state of the disk medium does not cause structural damage. It is determined that the rotation in the direction of movement at an angle of 90 degrees changes only the direction of the acceleration vector without increasing its value. Originality/value: The dependences between own time and coordinate time are formulated. It is proved that a small change in the natural time for the studied disk can significantly change the coordinate time, and the pulsed electromagnetic field provides the ability to cover infinitely large distances over finite periods of time.
Purpose: Develop a method for determining and evaluating the stress-strain state, particularly the distribution of thermomechanical stresses in the materials of individual rotating parts of vehicles. Design/methodology/approach: The proposed method is based on the principle of gradual approximations of the solution when the boundary conditions are satisfied on the curvilinear limiting surfaces of the disk body. Findings: The proposed method of determining and estimating the distribution of thermomechanical stresses in the disk material makes it possible to take into account the variable geometry: thickness and presence of a hole in the central part of the disk, also correctly determine stress-strain state at any point of unevenly heated rotating axial body. Research limitations/implications: The work uses generally accepted assumptions and limitations for thermomechanical calculations. Originality/value: It is proved that in real disks, the stress-strain state is spatial, and the well - known method based on the hypotheses of the plane-stress state does not provide the possibility of calculating the values of stresses in the thickness of the disk. The obtained results can be used to improve the methodology of auto technical examination of road accidents. In addition, they can be taken into account by bus drivers on urban routes when choosing a safe distance in heavy traffic, as well as design engineers of car brake systems.
Purpose: Ensuring the required operational reliability of disc brakes by forecasting their technical condition taking into account thermomechanical processes. Design/methodology/approach: Differential equations of rotation of a rigid body around a fixed axis are solved, it is established that the equations of motion and the equations of thermal conductivity are indirectly related. The use of these analytical dependences provides a better understanding of thermomechanical transients. Findings: The solution is obtained on the basis of the differential equation of thermal conductivity of the hyperbolic type, which does not allow an infinite velocity of propagation of temperature perturbations in contrast to the differential equation of thermal conductivity of the parabolic Fourier type. The obtained analytical dependences provide a better understanding of thermomechanical transients and develop a theoretical basis for determining stresses and heat fluxes in solving problems of reliability and durability of disc brakes. Research limitations/implications: The work uses generally accepted assumptions and limitations for thermomechanical calculations. Practical implications: It is shown, that transients in a mechanical system - a brake disk at impulse loadings cause emergence of thermal effects which arise under the influence of external loadings. Originality/value: The application of these analytical dependences provides a better understanding of thermomechanical transients and develops a theoretical basis for solving problems of reliability and durability of disc brakes.
Purpose: Develop a method for determining and evaluating the stress-strain state, in particular the distribution of thermomechanical stresses in the materials of individual rotating parts of vehicles. Design/methodology/approach: The proposed method is based on the principle of gradual approximations of the solution when the boundary conditions are satisfied on the curvilinear limiting surfaces of the disk body. Findings: The proposed method of determining and estimating the distribution of thermomechanical stresses in the disk material makes it possible to take into account the variable geometry: thickness and presence of a hole in the central part of the disk, also correctly determine stress strain state at any point of unevenly heated rotating axial body. Research limitations/implications: The work uses generally accepted assumptions and limitations for thermomechanical calculations. Originality/value: It is proved that in real disks the stress-strain state is spatial, and the well-known method based on the hypotheses of the plane-stress state does not provide the possibility of calculating the values of stresses in the thickness of the disk. The obtained results can be used as a basis for improving the methodology of auto technical examination of road accidents. In addition, they can be taken into account by design engineers of car brake systems.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.