The paper presents an evolutionary multi-objective approach to automatically generate morphological filters to solve unknown distances areas, found in depth images used by real-time embedded systems for visually impaired people, and to prevent accidents. It was used Cartesian Genetic Programming as base for the NSGAII multi-objective optimization algorithm proposed to optimize two objectives: low error rates for quality x low complexity for speed. Results showed this approach was able to deliver feasible solutions with good quality and speed to be used in real-time systems.
PL
W artykule zaprezentowano metodę ewolucyjną do automatycznego generowania morfologicznego filtru do określania brakujących danych w obrazach ludzi otrzymywanych on-line. Użyto programu Cartesian Genetic do optymalizacji algorytmu. Zastosowane rozwiązanie umożliwiało dostarczanie poprawę szybkości o dokładności przetwarzania obrazu.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.