In this paper, we shortly present and discuss structural, electrical and spectral properties of organic composites with the general formulae (BEDT-TTF)x/A and (BEDO-TTF)x/A, where A denotes an electron- acceptor species such as iodine, AuI, or AuI3. Electron transfer between large conducting grains restricts electrical conductivity of the composites; the most probable mechanism being fluctuation -induced tunneling conduction. Extensive spectral properties of organic composites are presented. It is shown that spectral studies can provide specific information about charge localization, electron-electron and electron-molecular vibration interactions, and about changes in the properties of highly conducting organic composites with ageing or annealing.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Marker planning is an optimization arrangement problem, where a set of cutting parts need to be placed on a thin paper without overlapping to create a marker – an exact diagram of cutting parts that will be cut from a single spread. An optimal marker that utilizes the length of textile material has to be obtained. The aim of this research was to develop novel algorithms for obtaining an efficient marker that would achieve competitive results and optimize the garment production in terms of improving the utilization of textile material. In this research, a novel Grid heuristic was introduced for obtaining a marker, alongside its improvement methods: Grid-BLP and Grid-Shaking. These heuristics were hybridized with genetic algorithm that determined the placement order of cutting parts using the newly introduced All Equal First (AEF) placement order. A novel individual representation for genetic algorithm was designed that was composed of order sequence, rotation detection and the choice of placement algorithm (hyper-heuristic). Experiments were conducted to determine the best marker making method, and hyper-heuristic efficiency. The implementation and experiments were conducted in MATLAB using GEATbx toolbox on five datasets from the garment industry: ALBANO, DAGLI, MAO, MARQUES and MAN SHIRT. Marker efficiency in percentage was recorded with best results: 84.50%, 80.13%, 79.54%, 84.67% and 86.02% obtained for the datasets respectively. The most efficient heuristic was Grid-Shaking. Hyper-heuristic applied Grid-Shaking in 88% of times. The created algorithm is independent of cutting parts’ shape. It can produce markers of arbitrary shape and is flexible in terms of expansion to new instances from the garment industry (leather nesting, avoiding damaged areas of material, marker making with materials with patterns).