We characterize the Banach space operators T whose arithmetic means ${n^{-1}(I + T + ... + T^{n-1})}_{n ≥ 1}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence ${n^{-1} T^n}_{n ≥ 1}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.