For positive integers m and N, we estimate the rational exponential sums with denominator m over the reductions modulo m of elements of the set F(N) = {s/r : r, s ∈ Z, gcd(r, s) = 1, N ≥ r > s ≥ 1} of Farey fractions of order N (only fractions s/r with gcd(r, m) = 1 are considered).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a prime p > 2, an integer a with gcd(a,p) = 1 and real 1 ≤ X,Y < p, we consider the set of points on the modular hyperbola Ηa,p(X,Y) = {(x,y) : x,y ≡ a (mod p), 1 ≤ x ≤ X, 1 ≤ y ≤ Y}. We give asymptotic formulas for the average values (x,y)∈ ... [wzór] with the Euler function φ(k) on the difference between the components of points of Ηa,p(X,Y).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a prime p and an absolutely irreducible modulo p polynomial ƒ(U, V) L 1\U, V] we obtain an asymptotic formula for the number of solutions to the congruence ƒ(x,y) = a (modp) in positive integers x ≤ X, y ≤ Y, with the additional condition gcd(x,y) = 1. Such solutions have a natural interpretation as solutions which are visible from the origin. These formulas are derived on average over a for a fixed prime p, and also on average over p for a fixed integer a.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We estimate the number of possible degree patterns of k-lacunary polynomials of degree t< p which split completely modulo p. The result is based on a combination of a bound on the number of zeros of lacunary polynomials with some graph theory arguments.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We obtain an asymptotic formula for the number of visible points (x,y). that is, with gcd(x, y) = 1, which lie in the box [1, U] x [1,V] and also belong to the exponential modular curves y ≡ agx (mod p). Among other tools, some recent results of additive combinatorics due to J. Bourgain and M. Z. Garaev play a crucial role in our argument.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.