Praca dotyczy podejścia do parametryzacji w przypadku klasyfikacji emocji w śpiewie oraz porównania z klasyfikacją emocji w mowie. Do tego celu wykorzystano bazę mowy i śpiewu nacechowanego emocjonalnie RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song), zawierającą nagrania profesjonalnych aktorów prezentujących sześć różnych emocji. Następnie obliczono współczynniki mel-cepstralne (MFCC) oraz wybrane deskryptory niskopoziomowe MPEG 7. W celu selekcji cech, posiadających najlepsze wyniki rankingowe, wykorzystano las drzew. Następnie dokonano klasyfikacji emocji z za pomocą maszyny wektorów nośnych (SVM, Support Vector Machine). Stwierdzono, że parametryzacja skuteczna dla mowy nie jest skuteczna dla śpiewu. Wyznaczono podstawowe parametry, które zgodnie z otrzymanymi wynikami pozwalają na znaczną redukcję wymiarowości wektorów cech, jednocześnie podnosząc skuteczność klasyfikacji.
EN
This paper concerns the approach to parameterization for the classification of emotions in singing and comparison with the classification of emotions in speech. For this purpose, the RAVDESS database containing emotional speech and song was used. This database contains recordings of professional actors presenting six different emotions. Next, Mel Frequency Cepstral Coefficients and selected Low-Level MPEG 7 descriptors were calculated. Using the algorithm of Feature Selection based on a Forest of Trees, coefficients, and descriptors with the best ranking results were determined. Then, the emotions were classified using the Support Vector Machine. The classification was repeated several times, and the results were averaged. It was found that descriptors used for emotion detection in speech are not as useful for singing. Basic parameters for singing were determined which, according to the obtained results, allow for a significant reduction in the dimensionality of feature vectors while increasing the classification efficiency of emotion detection.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.