Recently, high efficient solar power generation is required because eco-awareness is increasing. High efficient generation becomes possible by focusing sunlight on electric generating element, i.e. CPV (Concentrator photovoltaic). Although the concentrator is used for focusing sunlight, it demands large spherical surface with high solar reflectance, fine accuracy and lightweight. Aluminum is considered as suitable material for concentrator. However, mirror-like processing on large spherical surface is very difficult. Therefore, new polishing technology for aluminum was developed and evaluated in this paper.Main objective is to obtain high solar reflectance by improving surface roughness. As a trial study, workpiece was not large spherical but small and flat. Firstly, the polishing tool which attached polishing cloth was developed.Optimum polishing cloth for tool was investigated by trial and error approach. When workpiece was heated before starting polishing, a number of oxides were adhered to polishing cloth and surface roughness was improved efficiently.Then optimum polishing condition was decided by using design of experiments method. Finally, solar reflectance on polished surface was measured and evaluated. It is concluded from these results that (1) the developed polishing technology was effective for processing the mirror-like surface on the surface of aluminum, (2) 82% solar reflectance was obtained with developed polishing technology by improving surface roughness of workpiece.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Poly(lactic acid) (PLA) is a biodegradable biomass polymer. Polymer blends or polymer al- loys have been used to overcome its brittleness. Because poly(butylene/adipate/terephthalate) (PBAT) is a ductile and biodegradable polymer, PLA/PBAT polymer alloys can potentially exhibit high impact strengths. Di?erent mixing ratios of PLA/PBAT (80:20, 70:30 and 60:40) and the addition of dialkylperoxide as compatibilizing agent for each mixing ratio have been examined. The stress-strain curves of the PLA/PBAT specimens (observed using a scanning electron microscope) were measured using a split Hopkinson pressure bar (Kolsky bar) and a universal testing machine. The PBAT ratios and addition of dialkylperoxide a?ected the stress-strain curves. Yield stress decreased with increasing PBAT ratios. Addition of dialkylper- oxide did not change the yield stress of specimens when PLA:PBAT = 80:20. At high strain rates, the addition of dialkylperoxide clearly reduced yield stress and Young’s modulus when PLA: PBAT = 70:30 and 60:40.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Poly(lactic acid) (PLA) and poly(butylene adipate/terephthalate) (PBAT) were used for polymer alloys, and the e?ects of the mixing ratio of PLA and PBAT and the addition of dialkyl peroxide (compatibilizing agent) were examined. The stress-strain curves of PLA/PBAT and PLA/PBAT/dialkyl peroxide specimens were measured using a tensile split Hopkinson bar (Kolsky Bar) method and a universal testing machine. The mixing ratio of PLA and PBAT and the dialkyl peroxide addition a?ected the shape of the stress-strain curve behavior. Regardless of the strain rate, the yield stress decreased and the elongation at break and strain energy increased with increasing PBAT content when the dialkyl peroxide was used. At high strain rate, the dialkyl peroxide addition increased the elongation at break and the strain energy, and changed the fracture surface to a whitened form that was markedly uneven. This result could explain the improvement in the Izod impact strength.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present work concerns the description of the yield state of biodegradable materials. As examples, biodegradable polymers are chosen – cornpole CRP-M2, starch fatty acid ester, and PLA/PBAT, poly(lactic acid) (PLA) blended with poly(butylene adipate/terephthalate) (PBAT) [1, 2]. These biodegradable, plant-derived bioplastics are a promising alternative to petroleum-based plastics. To describe the onset of plasticity in the bioplastics under discussion, Burzyński ’s hypothesis of material effort has been applied [3, 4]. The applied criteria account for the strength differential effect and for the shear correction resulting from the difference between experimental and theoretical values obtained as a result of the Huber-Mises approach [5, 6]. In general, these properties of yield state are characteristic for polymers. The description of yield state for bioplastics is an issue that has hardly been investigated, which illustrates the novel nature of this paper where this topic is discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.