The authors consider the nonlinear difference equation (E) delta2 ((delta(bn delta yn))+f(n,yn-t)=0, n należy N(no)={no,no+1,...}, here {an} and {bn} are positive real sequences, I is a nonnegative integer, f: N(no) x R R is a continuous function with uf(n, u) > 0 for all u nierówne 0. They obtain necessary and sufficient conditions for the existence of nonoscillatory solutions with a specified asymptotic behavior. They also obtain sufficient conditions for all solutions to be oscillatory if/ is either strongly sublinear or strongly superlinear. Examples of their results are also included.
This paper discusses oscillatory and asymptotic properties of solutions of a class of third-order nonlinear neutral differential equations. Some new sufficient conditions for a solution of the equation to be either oscillatory or to converges to zero are presented. The results obtained can easily be extended to more general neutral differential equations as well as to neutral dynamic equations on time scales. Two examples are provided to illustrate the results.
In this paper, we establish the existence of at least three solutions of the multi-point boundary value system [formula]. The approaches used are based on variational methods and critical point theory.
This paper deals with the oscillation of a certain class of second order difference equations with a sub-linear neutral term. Using some inequalities and Riccati type transformation, four new oscillation criteria are obtained. Examples are included to illustrate the main results.
The authors study a type of second order nonlinear telegraph equation. The existence and uniqueness of positive doubly periodic solutions are discussed. The parametric dependence of the solutions is also investigated. Two examples are given as applications of the results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.