Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
|
2002
|
tom 79
|
nr 2
171-184
EN
A definable subset of a Euclidean space X is called perfectly situated if it can be represented in some linear system of coordinates as a finite union of (graphs of) definable 𝓒¹-maps with bounded derivatives. Two subsets of X are called simply separated if they satisfy the Łojasiewicz inequality with exponent 1. We show that every closed definable subset of X of dimension k can be decomposed into a finite family of closed definable subsets each of which is perfectly situated and such that any two different sets of the decomposition are simply separated and their intersection is of dimension < k.
2
Content available remote Michael's theorem for Lipschitz cells in o-minimal structures
63%
|
|
tom 117
|
nr 2
101-107
EN
A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a common constant) is proven. Uniform equi-LCⁿ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.
3
Content available remote On the implicit function theorem in o-minimal structures
63%
|
|
nr 1
19-21
EN
A local-global version of the implicit function theorem in o-minimal structures and a generalization of the theorem of Wilkie on covering open sets by open cells are proven.
4
Content available remote Extension of $C^{∞}$ functions from sets with polynomial cusps
44%
|
|
tom 88
|
nr 3
279-287
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.