Advanced computer technology tools, like computational fluid dynamics (CFD) and knowledge about the functioning of the human blood circulatory system, structure of blood, behavior of vessels – allow improving understanding the process of blood distribution in human body. Complex simulation has to assume multiphase approach, walls elasticity and pulsating blood flow conditions, resulting from work of the heart [1]. In the presented work the blood flow and pressure were simulated. The characteristic impedance, peripheral resistance, capacitance in the systemic peripheral vascular beds had been taken into the consideration in electrical analogues as a lumped parameter model (LPM) of the circulatory system which will be implemented as a boundary conditions in the complete CFD model on the inlet of ascending aorta and on the outlets of descending aorta, innominate artery, left common artery and left subclavian artery [2]. The resistance in a vessel was modeled by electronic component – resistor. The blood flow is not stationary, it is stored (e.g. in the vessels and kidneys) just like energy in the capacitors. Coil is an analog to the inert tendency of blood, which mass resists to move due to the pressure difference. Furthermore it can be assumed that flow has only one direction – so vessels act like a diodes in electronic circles. Additionally the conservation of the mass principle has been applied converted into the Kirchhoff’s law [3].The realistic, time-course, lumped parameter (0D) model represents the cardiovascular system and is written in Matlab code, however it can be implemented in the external numerical modeling application (CFD) in the future.
PL
Zaawansowane komputerowe narzędzia wspomagania inżynierskiego, jak numeryczna mechanika płynów (CFD) oraz wiedza na temat funkcjonowania układu krążenia człowieka, struktury krwi, zachowania naczyń krwionośnych pozwalają na lepsze zrozumienie procesu dystrybucji krwi po organizmie. Kompleksowe symulacje muszą zakładać wielofazowość przepływu krwi, elastyczne ściany naczyń krwionośnych oraz pulsacyjny przepływ wynikający z charakterystyki pracy serca [1]. W prezentowanej pracy zamodelowano przepływ oraz ciśnienie krwi. Charakterystyczna impedancja, rezystancja oraz pojemność zostały wzięte pod uwagę w elektrycznej analogii jako model skupiony dużego układu krążenia, który zostanie zaimplementowany jako warunek brzegowy w kompletnym modelu CFD na wlocie do aorty wstępującej oraz na wylotach z pnia ramienno-głowowego, tętnicy szyjnej wspólnej lewej i tętnicy podobojczykowej lewej. Opór przepływu krwi w naczyniach jest analogiczny do oporu elektrycznego rezystora. Niestacjonarny przepływ regulowany przez elastyczne naczynia krwionośne można zasymulować używając kondensatora. Za pomocą cewki można opisać inercję krwi. Co więcej, zakładając, ze krew płynie tylko w jednym kierunku mimo zmiennego ciśnienia dzięki działaniu zastawek, w modelu można użyć w ich miejsce diod, które podobnie działają na przepływ prądu. Dodatkowo analogia elektryczna umożliwia zastosowanie zasady zachowania masy dzięki prawu Kirchhoffa [3]. Powstały model skupiony opisujący układ krążenia został napisany w programie Matlab, jednakże może być przepisany na język programowania C i zaimplementowany w zewnętrznym oprogramowaniu CFD.
Wodór będzie stanowił ważny element w procesie transformacji energetycznej, jako ogniwo łączące odnawialne źródła energii z wieloma gałęziami gospodarki – od paliw dla transportu, poprzez procesy przemysłowe, aż do generacji energii elektrycznej i ciepła. Instalacje pracujące na pokrycie lokalnego zapotrzebowania na paliwo, z wykorzystaniem pobliskich źródeł, zwiększą bezpieczeństwo energetyczne regionów i ułatwią dekarbonizację wielu sektorów, zgodnie z założeniami Pakietu Klimatycznego oraz aktualnym planem RePowerEU. Wodór stanowić może także element bilansujący dla stabilnej pracy systemu elektroenergetycznego. Droga do rozwoju gospodarki wodorowej wymaga natomiast wypracowania standardów, optymalizacji rozwiązań technicznych, budowania łańcucha dostaw oraz wprowadzenia stabilnego otoczenia prawnego. Niniejszy rozdział podsumowuje kluczowe cechy nośnika energii, jakim jest wodór, najważniejsze technologie jego produkcji i wykorzystania oraz ich potencjalny wpływ na rynek energii. Opisano również warianty zastosowania paliwa rozpatrywane przy budowaniu gospodarki wodorowej i jej rolę w procesie transformacji energetycznej, które stanowią o potencjale technologii i uzasadniają podejmowane działania. Polska obecnie produkuje około 1 mln ton wodoru rocznie, głównie poprzez reforming parowy gazu ziemnego. Posiadane doświadczenia w tym zakresie powalają nam na podejmowanie działań związanych z dekarbonizacją istniejących źródeł wytwórczych oraz rozwój nowych źródeł zeroemisyjnych. Obecny proces tworzenia się nowego rynku opartego na wykorzystaniu nisko- i bezemisyjnego wodoru sprzyja powstawaniu wielu ciekawych inicjatyw, w tym struktur nazwanych Dolinami Wodorowymi. W rozdziale opisano aktywne podmioty i wybrane projekty realizowane aktualnie w Polsce. Podjęto także temat założeń Polskiej Strategii Wodorowej – opisano główne cele, które ona wyznacza, a także zagadnienia związane z trwającymi zmianami legislacyjnymi. Podsumowanie zawiera wnioski wyciągnięte z realizacji pierwszych projektów wodorowych w Polsce przez firmę SBB ENERGY SA.
EN
Hydrogen will be an important element in the energy transition, as a link between renewable energy sources and many sectors of the economy – from fuels for transportation to industrial processes to electricity generation and heat. Installations working to meet local fuel needs, using neighbouring sources, will increase regional energy security and facilitate the decarbonization of many sectors, in line with the Climate Package and the current RePowerEU plan. Hydrogen can also provide a balancing element for the stable operation of the electric power system. However, the road to the growth of the hydrogen economy requires the development of standards, the optimization of technical solutions, the building of a supply chain and the introduction of a stable legal environment. This chapter summarizes the key features of the hydrogen energy carrier, the most important technologies for its production and use, and their potential impact on the energy market. It also describes the fuel application variants considered in building a hydrogen economy and its role in the energy transition process, which represent the potential of the technology and justify the actions being taken. Poland currently produces about 1 million tons of hydrogen per year, mainly through steam reforming of natural gas. The experience we have in this area allows us to take steps to decarbonize existing generation sources and develop new zero-carbon production sources. The current process of creating a new market based on the use of low- and zero-emission hydrogen is fostering the formation of many interesting initiatives, including structures called Hydrogen Valleys. The chapter describes active players and selected projects currently underway in Poland. The assumptions of the Polish Hydrogen Strategy are also addressed – the main goals it sets are described, as well as issues related to ongoing legislative changes. The summary includes lessons learned from the implementation of the first hydrogen projects in Poland by SBB ENERGY SA.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this work, a three-dimensional simplified computational model was built to simulate the passive thermo-physiological response of part of a newborn’s head for neonate’s selective brain cooling. Both metabolicheat generation and blood perfusion were considered. The set of model parameters was selected anda sensitivity study was carried out. Analysis of dimensionless sensitivity coefficients showed that the mostimportant are: the contact thermal resistance between the cool-cap and skin, the thermal resistance ofthe plastic wall material, and deep (arterial) blood temperature. The function specification method wasapplied to estimate the value of the contact resistance. Two, four and six computationally simulated mea-surements with different uncertainties were used to adjust random contact resistance value to the assumedone. Results showed that when using only two measurements having 2% of the uncertainty, the error ofestimation does not exceed 9.8%. However, when using six measurements having 1% of uncertainty, theresulting estimation is burdened with an error of 0.3% only.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.