The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) =∑u,v∈V (G) dG(u, v), where dG(u, v) is the distance (the length a shortest path) between the vertices u and v in G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index SWk(G) of G is defined as [...] SWk(G)=∑S⊆V(G)|S|=kd(S) $SW_k (G) = \sum\nolimits_{\mathop {S \subseteq V(G)}\limits_{|S| = k} } {d(S)}$ . We investigate the following problem: Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order n ≥ k such that SWk(G) = w (or SWk(T) = w)? In this paper, we give some solutions to this problem.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) = ∑u,v∈V(G) d(u, v) where dG(u, v) is the distance between vertices u and v of G. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph G of order at least 2 and S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph whose vertex set is S. We now introduce the concept of the Steiner Wiener index of a graph. The Steiner k-Wiener index SWk(G) of G is defined by [...] . Expressions for SWk for some special graphs are obtained. We also give sharp upper and lower bounds of SWk of a connected graph, and establish some of its properties in the case of trees. An application in chemistry of the Steiner Wiener index is reported in our another paper.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.