The therapeutical applications of ornamental plants have been categorized to be of a great effectiveness in multiple industries from ancient times until present days. Pluchea dioscoridis is widely known Egyptian wooden plant that has been extensively applied for different medicinal purposes. In this study, LC-ESI-MS/MS analysis of the potent antimicrobial ethyl acetate and n-butanol extracts of P. dioscoridis leaves led to identification of 28 and 21 compounds, respectively. The identified compounds were categorized as phenolic acids, phenolic acids derivatives, organic acids, flavonoids (aglycones and glycosides), secoiridoids, coumarin derivatives, and gallotannins derivatives. Among them, caffeic acid 3-sulfate was the most predominate in the investigated extracts followed by ferulic acid and dicaffeoyl-quinic acid. Also, the antimicrobial potentiality of different extracts was evaluated against different pathogenic microbes including Enterobacter cloacae, Micrococcus leutus, Aeromonas hydrophila, Bacillus subtilis, Bacillus cereus, Bacillus lichneformis and Clostridium species. Furthermore, different concentrations of the most potent extract were assayed for antibacterial efficacy on growth curve kinetics against the susceptible bacteria along 4days incubation period. Our gathered data confirmed that, the antimicrobial activity against tested bacteria was different according to the solvent used in the extraction process. Mostly, all the extracts showed a wide spectrum antibacterial activity except the plant water extract which shows a mild activity against Clostridium sp. only. Based on the highest inhibition zone diameter, the ethyl acetate extract followed by butanol extract exhibited the highest inhibition zone with Micrococcus luteus and B. subtilis (20.0 and 18.5 mm) respectively. Determining the effect of ethyl acetate extract at different concentration (0, 0.66, 1.66, 3.33, 6.67, 13.34 and 20.01 mg mL⁻¹) on M. luteus growth kinetics, the data assured that the antibacterial activity shows concentration dependent manner with the highest antibacterial activity at 20.01 mg mL⁻¹ culture. The data also confirmed that, none of the selected concentration showed bactericidal activity in the prepared cultures, and with the prolonged incubation period the bacteria acquire resistance against the extract beginning from second or third day of incubation.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Different solvent extracts of the aerial parts of Senna italica (Mill.) were investigated for their chemical constituents and biological activities. Moreover, bio-guided fractionation led to isolation and identification of six compounds, namely: physcion (1), emodin (2), 2-methoxy-emodin-6-O-β-d-glucopyranoside (3), 1-hydroxy-2-acetyl-3-methyl-6-hydroxy-8-methoxynaphthalene (tinnevellin) (4), quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (rutin) (5), and 1,6,8-trihydroxy-3-methoxy-9,10-dioxo-9,10-dihydroanthracene (6). The chemical structures of these compounds were established via 1D and 2D 1H- and 13C-NMR spectroscopy. Ethyl acetate and n-butanol extracts as well as compound 3 were evaluated for their anticancer activity against tumor cell lines. The tested extracts showed a moderate to weak activity, while compound 3 showed a moderate activity against human liver cancer (Hep G2) and breast cancer (MCF-7) cell lines with IC50 values of 57.5 and 42.3 μg/mL, respectively. Both ethyl acetate and n-butanol extracts exhibited antimicrobial activities with different strengths, i.e., ethyl acetate exhibited antimicrobial activity against seven test microbes while n-butanol extract showed antimicrobial activity against all tested microbes. This is the first report for the isolation of compound 3 as a new compound from S. italica growing in Egypt.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.