Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An elementary proof of the Weitzenböck Theorem
100%
2
Content available remote A decomposition theorem for complete comodule algebras over complete Hopf algebras
100%
3
Content available remote A note on semisimple derivations of commutative algebras
100%
|
|
tom 102
|
nr 2
263-270
EN
A concept of a slice of a semisimple derivation is introduced. Moreover, it is shown that a semisimple derivation d of a finitely generated commutative algebra A over an algebraically closed field of characteristic 0 is nothing other than an algebraic action of a torus on Max(A), and, using this, that in some cases the derivation d is linearizable or admits a maximal invariant ideal.
EN
CONTENTS 1. Introduction........................................................................................................................................................................................................ 5 2. Category of complexes.................................................................................................................................................................................... 7 3. Left stable derived functors of covariant functors....................................................................................................................................... 11 4. Functors with, extensions............................................................................................................................................................................... 24 5. On the exactness of connected sequences................................................................................................................................................ 37 6. Right and left stable derived functors of contravariant functors. Right stable derived functors of covariant functors................... 39 7. Symmetric power functor $SP^n$ and exterior power functor $Λ^n$..................................................................................................... 43 8. On J. H. C. Whitehead's functor Γ.................................................................................................................................................................. 48 9. Computation of the modules $L^s_qSP^2(R)$, $L^s_qΛ^2(R)$ and $L^s_qΓ(R)$........................................................................... 53 10. Computation of the functors $L^s_qSP^2$, $L^s_qΛ^2$ and $L^s_qΓ$............................................................................................ 59 11. Eilenberg-MacLane's stable homology and cohomology functors...................................................................................................... 64 References............................................................................................................................................................................................................ 67
5
Content available remote The geometric reductivity of the quantum group $SL_{q}(2)$
63%
EN
We introduce the concept of geometrically reductive quantum group which is a generalization of the Mumford definition of geometrically reductive algebraic group. We prove that if G is a geometrically reductive quantum group and acts rationally on a commutative and finitely generated algebra A, then the algebra of invariants $A^{G}$ is finitely generated. We also prove that in characteristic 0 a quantum group G is geometrically reductive if and only if every rational G-module is semisimple, and that in positive characteristic every finite-dimensional quantum group is geometrically reductive. Both the concept of geometrically reductive quantum group and the above mentioned theorems are formulated in the language of Hopf algebras and generalize the results of Borsai and Ferrer Santos. The main theorem of the paper says that in positive characteristic the quantum group $SL_{q}(2)$ is geometrically reductive for any parameter q.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.