For spaces X, Y, for which some algebraic operations are defined and in some cases topologies for X, Y are defined too, we define for the space X a dual space Xd with respect to the space Y. If [..] is a topology for Y (compatible with the algebraic operations of Y), then the pointwise topology rp for Yx is defined. We show that Xd is (algebraically)rp-closed in Yx. For normed spaces is shown that suitable subspaces of Xd are rp-closed in a product space K C Yx. As a corollary we obtain a generalization of Alaoglu's theorem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.