We discuss the problem of characterizing the possible asymptotic behaviour of the iterates of a sufficiently smooth nonlinear operator acting in a Banach space in small neighbourhoods of a fixed point. It turns out that under natural conditions, for the most part of initial approximations these iterates tend to "lie down" along a finite-dimensional subspace generated by the leading (peripherical) eigensubspaces of the Fréchet derivative at the fixed point and moreover the asymptotic behaviour of "projections" of the iterates on this subspace is determined by the arithmetic properties of the leading eigenvalues.
CONTENTS Introduction.......................................................................................................... 5 1. Multifunctions and selections............................................................................... 7 1. Multifunctions and selections.................................................................. 7 2. Continuous multifunctions and selections........................................... 9 3. Measurable multifunctions and selections............................................ 16 2. Multifunctions of two variables............................................................................... 19 4. Carathéodory multifunctions and selections......................................... 19 5. The Scorza Dragoni property..................................................................... 25 6. Implicit function theorems......................................................................... 32 3. The superposition operator................................................................................... 33 7. The superposition operator in the space S........................................... 34 8. The superposition operator in ideal spaces......................................... 39 9. The superposition operator in the space C........................................... 47 4. Closures and convexifications.............................................................................. 49 10. Strong closures........................................................................................ 49 11. Convexifications....................................................................................... 52 12. Weak closures.......................................................................................... 56 5. Fixed points and integral inclusions..................................................................... 59 13. Fixed point theorems for multi-valued operators................................ 60 14. Hammerstein integral inclusions........................................................ 63 15. A reduction method................................................................................... 68 6. Applications............................................................................................................... 72 16. Applications to elliptic systems.............................................................. 72 17. Applications to nonlinear oscillations................................................. 75 18. Applications to relay problems.............................................................. 78 References.................................................................................................................... 81 Index of symbols........................................................................................................... 93 Index of terms................................................................................................................ 95
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We discuss the problem of characterizing the possible asymptotic behaviour of the norm of the iterates of a bounded linear operator between two Banach spaces. In particular, given an increasing sequence of positive numbers tending to infinity, we construct Banach spaces such that the norm of the iterates of a suitable multiplication operator between these spaces assumes (or exceeds) the values of this sequence.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.