The mechanical performance of beam-to-column connections plays an essential role in the design of post-and-beam glulam structures. This paper presents an investigation into the mechanical performance of glulam beam-to-column connections with coach screws as fasteners. A series of monotonic and reversed cyclic loading tests were conducted on the beam-to-column connections with coach screws, and the failure modes, moment-resisting capacity, stiffness, ductility and energy dissipation of the connections were analyzed. Results showed that the use of coach screws was an effective way to increase the initial stiffness, ductility and energy dissipation of the glulam beam-to-column connections. The strength of coach screws and glulam members was fully developed, and the moment-resisting capacity of the beam-to-column connections was improved due to the adoption of the coach screws. It was noted that the rotational deformation and energy dissipation of the beam-to-column connections was mainly governed by the mechanical performance of the screwed connections. Moreover, a separating analytical method and a finite element model were established for the tested glulam beam-to-column connections, and results indicated that the stress distribution, deformation and moment–rotation relationships of the connections can be predicted efficaciously versus the test results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.