Both definition and realization of vertical reference systems require gravity. Relation between height changes and gravity changes is well known in geodynamics on local, regional, and global scale. Consideration of time as additional dimension is needed in the modern vertical and gravity reference systems as well as in processing both levelling and gravity data. Classical vertical and gravity reference systems are briefly presented followed by the discussion of the need of advanced modification of both systems. Geodynamic aspects in creating modern vertical and gravity reference systems were discussed. The role of geodynamics in the realization of vertical and gravity reference systems was presented with emphasizing the key role of metrology.
The A10 is the first outdoor absolute gravimeter that allows to determine gravity with high precision. Absolute gravity survey with the A10 becomes highly competitive in terms of both efficiency and precision with traditional relative gravity survey. The portable A10-020 absolute gravimeter has been installed at the Borowa Gora Geodetic-Geophysical Observatory is September 2008. Since then a number of test measurements was conducted. Under laboratory conditions the series of gravity determination was obtained at two independent pillars at Borowa Gora as well as in Metsahovi and the BIPM gravimetric laboratories. Also a number outdoor gravity measurements with the use of mobile gravimetric laboratory was performed at the stations of gravity control in Poland and in Finland. The results obtained indicate higha quality of gravity determination with the A10under laboratory conditions and unprecedented quality under field conditions. They confirm the applicability of the A10 absolute gravimeter to the modernization of gravity control and high precision gravity survey required in modern gravity networks, but also usefulness in microgravimetry as well as geodynamics. Some practical problems concerning the use of the A10 and its operational procedure are discussed.
The existing Polish gravity control (POGK) established in the last few years of 20th century according to the international standards is spanned on 12 absolute gravity stations surveyed with four different types of absolute gravimeters. Relative measurements performed by various groups on nearly 350 points of POGK with the use of LaCoste&Romberg (LCR) gravimeters were linked to those 12 stations. The construction of the network, in particular the limited number of non homogeneously distributed absolute gravity stations with gravity determined with different instruments in different epochs is responsible for systematic errors in g on POGK stations. The estimate of those errors with the use of gravity measurements performed in 2007-2008 is given and their possible sources are discussed. The development of absolute gravity measurement technologies, in particular instruments for precise field absolute gravity measurements, provides an opportunity to establish new type of gravity control consisting of stations surveyed with absolute gravimeters. New gravity control planned to be established in 2012-2014 will consist of 28 fundamental points (surveyed with the FG5 - gravimeter), and 169 base points (surveyed with the A10 gravimeter). It will fulfill recent requirements of geodesy and geodynamics and it will provide good link to the existing POGK. A number of stations of the new gravity control with precisely determined position and height will form the national combined geodetic network. Methodology and measurement schemes for both absolute gravimeters as well as the technology for vertical gravity gradient determinations in the new gravity control were developed and tested. The way to assure proper gravity reference level with relation to ICAG and ECAG campaigns as well as local absolute gravimeter comparisons are described highlighting the role of metrology in the project. Integral part of the project are proposals of re-computation of old gravity data and their transformation to a new system (as 2nd order network) as well as a definition of gravity system as “zero-tide” system. Seasonal variability of gravity has been discussed indicating that the effects of environmental changes when establishing modern gravity control with absolute gravity survey cannot be totally neglected.
PL
Założona w Polsce w ostatniej dekadzie XX wieku zgodnie z obowiązującymi standardami międzynarodowymi Podstawowa Osnowa Grawimetryczna Kraju (POGK), składająca się z około 350 punktów, została oparta na 12 absolutnych punktach grawimetrycznych, na których przyspieszenie siły ciężkości wyznaczono przy użyciu czterech różnych typów grawimetrów absolutnych. Względne pomiary grawimetryczne na punktach tej osnowy, z jednoczesnym dowiązaniem jej do przyspieszenia siły ciężkości na 12 absolutnych punktach grawimetrycznych, wykonały różne grupy pomiarowe przy wykorzystaniu grawimetrów LaCoste&Romberg (LCR). Konstrukcja powstałej sieci grawimetrycznej, w szczególności ograniczona liczba nierównomiernie rozłożonych punktów absolutnych na terenie kraju, na których w dodatku przyspieszenie siły ciężkości wyznaczono różnymi instrumentami w różnych epokach, spowodowały wystąpienie błędów systematycznych w wartościach g na punktach POGK. W niniejszej pracy, przy wykorzystaniu pomiarów grawimetrycznych wykonanych w latach 2007-2008 dokonano oceny tych błędów oraz przeprowadzono dyskusję ich możliwych źródeł. Rozwój technologii absolutnych pomiarów grawimetrycznych, w szczególności instrumentów przeznaczonych do precyzyjnych absolutnych pomiarów grawimetrycznych w warunkach polowych, stwarza możliwość założenia nowego typu osnowy grawimetrycznej, składającej się ze stacji, na których przyspieszenie siły ciężkości jest pomierzone grawimetrami absolutnymi. Nowa osnowa grawimetryczna Polski, która będzie zakładana w latach 2012-2014, będzie się składała z 28 punktów fundamentalnych (mierzonych grawimetrem FG5) i 169 punktów bazowych (mierzonych grawimetrem A10). Będzie ona spełniała wymagania współczesnej geodezji i geodynamiki oraz zapewniała dobre powiązanie z istniejącą osnową POGK. Znaczna liczba punktów nowej osnowy grawimetrycznej, o precyzyjnie wyznaczonej pozycji wysokości utworzy krajową zintegrowaną osnowę geodezyjną. Opracowano i przetestowano metodologie i procedury pomiarowe na punktach nowej osnowy grawimetrycznej dla obu grawimetrów absolutnych (FG5, A10) oraz technologie wyznaczania gradientu pionowego przyspieszenia siły ciężkości na tych punktach. Określono metody zapewnienia odpowiedniego poziomu grawimetrycznego osnowy poprzez udział grawimetrów FG5 i A10 w międzynarodowej (ICAG) i europejskiej (ECAG), a także lokalnych kampaniach porównawczych grawimetrów absolutnych podkreślając jednocześnie rolę metrologii w projekcie. Integralnymi częściami projektu są zamierzenia przeliczenia archiwalnych danych grawimetrycznych wykorzystywanych przy tworzeniu POGK i ich przetransformowania do nowego systemu (jako sieć 2 rzędu) oraz zdefiniowania nowego systemu grawimetrycznego jako systemu „zero-tide”. Przeprowadzono również dyskusję zmienności sezonowej przyspieszenia siły ciężkości wskazując, że przy wyznaczaniu przyspieszenia siły ciężkości na punktach nowoczesnej osnowy grawimetrycznej wpływ zmian środowiskowych nie może być traktowany jako w pełni zaniedbywalny.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Temporal mass variations in the Earth system, which can be detected from the Gravity Recovery and Climate Experiment (GRACE) mission data, cause temporal variations of geoid heights. The main objective of this contribution is to analyze temporal variations of geoid heights over the area of Poland using global geopotential models (GGMs) developed on the basis of GRACE mission data. Time series of geoid height variations were calculated for the chosen subareas of the aforementioned area using those GGMs. Thereafter, these variations were analyzed using two different methods. On the basis of the analysis results, models of temporal geoid height variations were developed and discussed. The possibility of prediction of geoid height variations using GRACE mission data over the area of Poland was also investigated. The main findings reveal that the geoid height over the area of Poland vary within 1.1 cm which should be considered when defining the geoid model of 1 cm accuracy for this area.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.